Skip to main content

Unsupervised Stereo Matching with Occlusion-Aware Loss

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

Deep learning methods have shown very promising results for regressing dense disparity maps directly from stereo image pairs. However, apart from a few public datasets such as Kitti, the ground-truth disparity needed for supervised training is hardly available. In this paper, we propose an unsupervised stereo matching approach with a novel occlusion-aware reconstruction loss. Together with smoothness loss and left-right consistency loss to enforce the disparity smoothness and correctness, the deep neural network can be well trained without requiring any ground-truth disparity data. To verify the effectiveness of the proposed method, we train and test our approach without ground-truth disparity data. Competitive results can be achieved on the public datasets (Kitti Stereo 2012, Kitti Stereo 2015, Cityscape) and our self-collected driving dataset that contains diverse driving scenario compared to the public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: MatchNet: unifying feature and metric learning for patch-based matching. In: CVPR (2015)

    Google Scholar 

  2. Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: a two-stage convolutional neural network for stereo matching. In: ICCVW (2017)

    Google Scholar 

  3. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)

    Google Scholar 

  4. Kendall, A., et al. Bry, A.: End-to-end learning of geometry and context for deep stereo regression. In: arXiv preprint arXiv:1703.04309 (2017)

  5. Xu, L., Jia, J.: Stereo matching: an outlier confidence approach. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 775–787. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_57

    Chapter  Google Scholar 

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  7. Menze, M., Geiger, A.: Object scence flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  8. Cordts, M., et al.: The Cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  9. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  10. Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusionD. IJCV 28(2), 155–174 (1998)

    Article  Google Scholar 

  11. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. TPAMI 28(4), 650–656 (2006)

    Article  Google Scholar 

  12. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: ICCV (2001)

    Google Scholar 

  13. Klaus, A., Sormanm, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR (2006)

    Google Scholar 

  14. Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. TPAMI 31(3), 492–504 (2009)

    Article  Google Scholar 

  15. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. TPAMI 30(2), 328–341 (2008)

    Article  Google Scholar 

  16. Yang, Q.: A non-local cost aggregation method for stereo matching. In: CVPR (2012)

    Google Scholar 

  17. Mei, X., Sun, X., Dong, W., Wang, H., Zhang, X.: Segment-tree based cost aggregation for stereo matching. In: CVPR (2013)

    Google Scholar 

  18. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: Fast cost volume filtering for visual correspondence and beyond. In: CVPR (2011)

    Google Scholar 

  19. Yang, Q.: Stereo matching using tree filtering. TPAMI 37(4), 834–846 (2015)

    Article  Google Scholar 

  20. Zhang, L., Seitz, S.M.: Estimating optimal parameters for MRF stereo from a single image pair. TPAMI 29(2), 331–342 (2007)

    Article  Google Scholar 

  21. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: CVPR (2007)

    Google Scholar 

  22. Li, Y., Huttenlocher, D.P.: Learning for stereo vision using the structured support vector machine. In: CVPR (2008)

    Google Scholar 

  23. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. JMLR 17(1), 2287–2318 (2016)

    MATH  Google Scholar 

  24. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: CVPR (2016)

    Google Scholar 

  25. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  26. Gidaris, S., Komodakis, N.: Detect, replace, refine: deep structured prediction for pixel wise labeling. In: CVPR (2017)

    Google Scholar 

  27. Fischer, P., et al.: FlowNet: Learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  28. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  29. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  30. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)

    Google Scholar 

  31. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for Single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  32. Zhou, T., Brown, M., Snavely, N., Lowe, D.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

  33. Zhou, C., Zhang, H., Shen, X., Jia, J.: Unsupervised learning of stereo matching. In: ICCV (2017)

    Google Scholar 

  34. Zhong, Y., Dai, Y., Li, H.: Self-supervised learning for stereo matching with self-improving ability. arXiv preprint arXiv:1709.00930 (2017)

  35. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  36. Guney, F., Geiger, A.: Displets: resolving stereo ambiguities using object knowledge. In: CVPR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningqi Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, N., Yang, C., Sun, W., Song, B. (2018). Unsupervised Stereo Matching with Occlusion-Aware Loss. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics