Skip to main content

Joint Residual Pyramid for Depth Map Super-Resolution

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

High-resolution (HR) depth map can be better inferred from a low-resolution (LR) one with the guidance of an additional HR texture map of the same scene. Recently, deep neural networks with large receptive fields are shown to benefit applications such as image completion. Our insight is that super resolution (SR) is similar to image completion, where only parts of the depth values are precisely known. However, large receptive fields in general will increase the depth and the number of parameters of the network, which may cause degradation and large memory consumption. To solve these problems, we adapt the convolutional neural pyramid (CNP) structure by introducing residual block and linear interpolation layer, and adopt the CNP in the joint super-resolution framework. We call this convolutional neural model joint residual pyramid (JRP). Our JRP model consists of three sub-networks, two convolutional neural residual pyramids concatenated by a normal convolutional neural network. The convolutional neural residual pyramids extract information from large receptive fields of the depth map and guidance map, while the convolutional neural network effectively transfers useful structures of the guidance image to the depth image. Experimental results show that our model outperforms existing state-of-the-art algorithms not only on data pairs of RGB/depth images, but also on other data pairs like color/saliency and color-scribbles/colorized images.

The work is supported by the National Key Research and Development Program of China(Grant Num: 2018YFB0203900), NSFC from PRC (Grant Num.: 61502158), Hunan NSF (Grant Num.: 2017JJ3042, 2018JJ3067), and China Postdoctoral Foundation (Grant Num.: 2016M590740).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mac Aodha, O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 71–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_6

    Chapter  Google Scholar 

  2. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV, pp. 1520–1529 (2017)

    Google Scholar 

  3. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536 (2013)

    Google Scholar 

  4. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: NIPS, pp. 291–298 (2005)

    Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. arXiv abs/1608.00367 (2016). http://arxiv.org/abs/1608.00367

  7. Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: ICCV, pp. 993–1000 (2013)

    Google Scholar 

  8. Ham, B., Cho, M., Ponce, J.: Robust image filtering using joint static and dynamic guidance. In: CVPR, pp. 4823–4831 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV, pp. 1–14 (2010)

    Google Scholar 

  11. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  12. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  13. Hui, T.-W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_22

    Chapter  Google Scholar 

  14. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. In: SIGGRAPH, p. 96 (2007)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  16. Lei, J., Li, L., Yue, H., Wu, F., Ling, N., Hou, C.: Depth map super-resolution considering view synthesis quality. TIP 26(4), 1732 (2017)

    MathSciNet  Google Scholar 

  17. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: SIGGRAPH, pp. 689–694 (2004)

    Google Scholar 

  18. Li, Y., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep joint image filtering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_10

    Chapter  Google Scholar 

  19. Liu, M.Y., Tuzel, O., Taguchi, Y.: Joint geodesic upsampling of depth images. In: CVPR, pp. 169–176 (2013)

    Google Scholar 

  20. Lu, J., Forsyth, D.: Sparse depth super resolution. In: CVPR, pp. 2245–2253 (2015)

    Google Scholar 

  21. Lu, S., Ren, X., Liu, F.: Depth enhancement via low-rank matrix completion. In: CVPR, pp. 3390–3397 (2014)

    Google Scholar 

  22. Mathieu, M., Couprie, C., Lecun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  23. Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: ICCV, pp. 1623–1630 (2011)

    Google Scholar 

  24. Ren, H., Elkhamy, M., Lee, J.: Image super resolution based on fusing multiple convolution neural networks. In: CVPR, pp. 1050–1057 (2017)

    Google Scholar 

  25. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  26. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  27. Shen, X., Chen, Y., Tao, X., Jia, J.: Convolutional neural pyramid for image processing. CoRR abs/1704.02071 (2017). http://arxiv.org/abs/1704.02071

  28. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  30. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: CVPR, pp. 567–576 (2015)

    Google Scholar 

  31. Yang, J., Ye, X., Li, K., Hou, C., Wang, Y.: Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. TIP 23(8), 3443–3458 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-depth super resolution for range images. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Y., Cao, X., Zheng, Y., Zhu, X. (2018). Joint Residual Pyramid for Depth Map Super-Resolution. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics