Skip to main content

Determining the Applicability of Advice for Efficient Multi-Agent Reinforcement Learning

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11013))

Included in the following conference series:

  • 3742 Accesses

Abstract

Action advice is an important mechanism to improve the learning speed of multiple agents. To do so, an advisor agent suggests actions to an advisee agent. In the current advising approaches, the advisor’s advice is always applicable based on the assumption that the advisor and advisee have the same objective, and the environment is stable. However, in many real-world applications, the advisor and advisee may have different objectives, and the environment may be dynamic. This would make the advisor’s advice not always applicable. In this paper, we propose an approach where the advisor and advisee jointly determine the applicability of advice by considering the different objectives and dynamic changes in the environment. The proposed approach is evaluated in various robot navigation domains. The evaluation results show that the proposed approach can determine the applicability of advice. The multi-agent learning speed can also be improved benefiting from determined applicable advice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, O., Kamar, E., Kolobov, A., Grosz, B.J.: Interactive teaching strategies for agent training. In: Proceedings of the 25th International Joint Conferences on Artificial Intelligence, pp. 804–811 (2016)

    Google Scholar 

  2. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2), 156–172 (2008)

    Article  Google Scholar 

  3. De Hauwere, Y.M., Vrancx, P., Nowé, A.: Learning what to observe in multi-agent systems. In: Proceedings of the 20th Belgian-Netherlands Conference on Artificial Intelligence, pp. 83–90. Citeseer (2009)

    Google Scholar 

  4. Maclin, R., Shavlik, J.W.: Creating advice-taking reinforcement learners. Mach. Learn. 22(1–3), 251–281 (1996)

    MATH  Google Scholar 

  5. Taylor, M.E., Carboni, N., Fachantidis, A., Vlahavas, I., Torrey, L.: Reinforcement learning agents providing advice in complex video games. Connect. Sci. 26(1), 45–63 (2014)

    Article  Google Scholar 

  6. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Torrey, L., Taylor, M.: Teaching on a budget: agents advising agents in reinforcement learning. In: Proceedings of the 12th International Conference on Autonomous Agents and Multiagent systems, pp. 1053–1060 (2013)

    Google Scholar 

  8. Yu, C., Zhang, M., Ren, F.: Coordinated learning by exploiting sparse interaction in multiagent systems. Concurrency Comput. Pract. Experience 26(1), 51–70 (2014)

    Article  Google Scholar 

  9. Yu, C., Zhang, M., Ren, F., Tan, G.: Multiagent learning of coordination in loosely coupled multiagent systems. IEEE Trans. Cybern. 45(12), 2853–2867 (2015)

    Article  Google Scholar 

  10. Zhan, Y., Ammar, H.B., Taylor, M.E.: Theoretically-grounded policy advice from multiple teachers in reinforcement learning settings with applications to negative transfer. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 2315–2321 (2016)

    Google Scholar 

  11. Zhou, L., Yang, P., Chen, C., Gao, Y.: Multiagent reinforcement learning with sparse interactions by negotiation and knowledge transfer. IEEE Trans. Cybern. 47(5), 1238–1250 (2017)

    Article  Google Scholar 

  12. Zimmer, M., Viappiani, P., Weng, P.: Teacher-student framework: a reinforcement learning approach. In: AAMAS Workshop Autonomous Robots and Multirobot Systems (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Ren, F., Zhang, M. (2018). Determining the Applicability of Advice for Efficient Multi-Agent Reinforcement Learning. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97310-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97309-8

  • Online ISBN: 978-3-319-97310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics