Abstract
We show that conditional random fields (CRFs) with learned heterogeneous graphs outperforms its pre-designated homogeneous counterparts with heuristics. Without introducing any additional annotations, we utilize four deep convolutional neural networks (CNNs) to learn the connections of one pixel to its left, top, upper-left, upper-right neighbors. The results are then fused to obtain the super-pixel-level CRF graphs. The model parameters of CRFs are learned via minimizing the negative pseudo-log-likelihood of the potential function. Our results show that the learned graph delivers significantly better segmentation results than CRFs with pre-designated graphs, and achieves state-of-the-art performance when combining with CNN features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: CVPR, pp. 3479–3487 (2015)
Bulo, S.R., Neuhold, G., Kontschieder, P.: Loss max-pooling for semantic image segmentation. arXiv preprint arXiv:1704.02966 (2017)
Cadena, C., Košecká, J.: Semantic segmentation with heterogeneous sensor coverages. In: ICRA, pp. 2639–2645. IEEE (2014)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915 (2016)
Cogswell, M., Lin, X., Purushwalkam, S., Batra, D.: Combining the best of graphical models and convnets for semantic segmentation. arXiv preprint arXiv:1412.4313 (2014)
Dai, J., He, K., Sun, J.: Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. TPAMI 35(8), 1915–1929 (2013)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Kochanov, D., Ošep, A., Stückler, J., Leibe, B.: Scene flow propagation for semantic mapping and object discovery in dynamic street scenes. In: IROS, pp. 1785–1792. IEEE (2016)
Korč, F., Förstner, W.: Approximate parameter learning in conditional random fields: an empirical investigation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 11–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69321-5_2
Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. arXiv preprint arXiv:1611.06612 (2016)
Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: CVPR, pp. 3194–3203 (2016)
Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Exploring context with deep structured models for semantic segmentation. TPAMI 40(6), 1352–1366 (2018)
Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR, pp. 5872–5881. IEEE (2017)
Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: ICCV, pp. 1377–1385 (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520–1528 (2015)
Ošep, A., Hermans, A., Engelmann, F., Klostermann, D., Mathias, M., Leibe, B.: Multi-scale object candidates for generic object tracking in street scenes. In: ICRA, pp. 3180–3187. IEEE (2016)
Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. arXiv preprint arXiv:1502.02734 (2015)
Schwing, A.G., Urtasun, R.: Fully connected deep structured networks. arXiv preprint arXiv:1503.02351 (2015)
Wu, Z., Shen, C., Hengel, A.V.D.: High-performance semantic segmentation using very deep fully convolutional networks. arXiv preprint arXiv:1604.04339 (2016)
Zhang, R., Yang, W., Peng, Z., Wang, X., Lin, L.: Progressively diffused networks for semantic image segmentation. arXiv preprint arXiv:1702.05839 (2017)
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: ICCV, pp. 1529–1537 (2015)
Acknowledgement
This research was partly supported by the Zhejiang Provincial Natural Science Foundation of China (LQ16F030007 and LQ18F030013), and by National Natural Science Foundation of China (U1509207, 61305021 and 61603341).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ding, F., Wang, Z., Guo, D., Chen, S., Zhang, J., Shao, Z. (2018). Deep CRF-Graph Learning for Semantic Image Segmentation. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-97310-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97309-8
Online ISBN: 978-3-319-97310-4
eBook Packages: Computer ScienceComputer Science (R0)