Abstract
Big data technologies are rapidly gaining popularity and become widely used, thus, making the choice of developing methodologies including the approaches for requirements analysis more acute. There is a position that in the context of the Data Warehousing (DW), similar to other Decision Support Systems (DSS) technologies, defining information requirements (IR) can increase the chances of the project to be successful with its goals achieved. This way, it is important to examine this subject in the context of Big data due to the lack of research in the field of Big data requirements analysis. This paper gives an overview of the existing methods associated with Big data technologies and requirements analysis, and provides an evaluation by three types of criteria: (i) general characteristics, (ii) requirements analysis related, and (iii) Big data technologies related criteria. We summarize on the requirements analysis process in Big data projects, and explore solutions on how to (semi-) automate requirements engineering phases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beyer, M.A., Laney, D.: The importance of ‘big data’: a definition. Gartner, Stamford (2012)
Kart, L., Heudecker, N., Buytendijk, F.: Survey Analysis: Big Data Adoption in 2013 Shows Substance Behind the Hype. Gartner Inc. (2013)
Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: IC3 2013, pp. 404–409. IEEE Press (2013)
Tardio, R., Mate, A., Trujillo, J.: An iterative methodology for big data management, analysis and visualization. IEEE BigData 2015, pp. 545–550 (2015)
Di Tria, F., Lefons, E., Tangorra, F.: Design process for big data warehouses. In: DSAA 2014, pp. 512–518 (2014)
Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical report. Keele University (2007)
Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., et al.: Towards a comprehensive data lifecycle model for big data environments. In: BDCAT 2016, pp. 100–106. ACM, New York (2016)
Caldarola, E.G., Picariello, A., Castelluccia, D.: Modern enterprises in the bubble: why big data matters. SIGSOFT Softw. Eng. Notes 40(1), 1–4 (2015)
Santos, M.Y., Costa, C.: Data warehousing in big data: from multidimensional to tabular data models. In: C3S2E 2016, pp. 51–60. ACM, New York (2016)
Arruda, D., Madhavji, N.H.: Towards a requirements engineering artefact model in the context of big data software development projects: Research in progress. IEEE Big Data 2017, pp. 2314–2319 (2017)
Eridaputra, H., Hendradjaya, B., Sunindyo, W.D.: Modeling the requirements for big data application using goal oriented approach. In: ICODSE’14 (2015)
Ardagna, C.A., Ceravolo, P., Cota, et al.: What are my users looking for when preparing a big data campaign. IEEE BigData Congress 2017, pp. 201–208 (2017)
Abdullah, T., Ahmet, A.: Genomics analyser: a big data framework for analysing genomics data. In: BDCAT 2017, pp. 189–197. ACM, New York (2017)
Liu, J., Shang, J., Wang, C., et al.: Mining quality phrases from massive text corpora. In: SIGMOD 2015, pp. 1729–1744 (2015)
Cheptsov, A., Tenschert, A., Schmidt, P., Glimm, B., Matthesius, M., Liebig, T.: Introducing a new scalable data-as-a-service cloud platform for enriching traditional text mining techniques by integrating ontology modelling and natural language processing. In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE 2013. LNCS, vol. 8182, pp. 62–74. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54370-8_6
Mallek, H., Ghozzi, F., Teste, O., Gargouri, F.: BigDimETL: ETL for multidimensional big data. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 935–944. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_92
Tikito, I., Souissi, N.: Data collect requirements model. In: BDCA 2017, 7 p. ACM, New York (2017). Article 4
Di Francescomarino, C., et al.: Semantic-based process analysis. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 228–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1_15
Madhavji, N.H., Miranskyy, A., Kontogiannis, K.: Big picture of big data software engineering: with example research challenges. In: BIGDSE 2015, pp. 11–14. IEEE Press (2015)
Shao, G., Shin, S., Jain, S.: Data analytics using simulation for smart manufacturing. In: Proceedings of the Winter Simulation Conference, pp. 2192–2203. IEEE Press (2014)
Fiore, S., et al.: Big data analytics on large-scale scientific datasets in the INDIGO-datacloud project. In: CF 2015, pp. 343–348. ACM, New York (2017)
Yasin, A., Liu, L., Cao, Z., Wang, J., Liu, Y., Ling, T.S.: Big data services requirements analysis. In: Kamalrudin, M., Ahmad, S., Ikram, N. (eds.) APRES 2017. CCIS, vol. 809, pp. 3–14. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7796-8_1
Fernandez-Garcia, A.J., Iribarne, L., Corral, A., Wang, James Z.: Evolving mashup interfaces using a distributed machine learning and model transformation methodology. In: Ciuciu, I., et al. (eds.) OTM 2015. LNCS, vol. 9416, pp. 401–410. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26138-6_43
Ji, J., Peng, R.: An analysis pattern driven requirements modeling method. In: REW Workshops, IEEE International, pp. 316–319. IEEE Press (2016)
Santos, J.C., et al.: BUDGET: a tool for supporting software architecture traceability research. In: WICSA 2016, pp. 303–306. IEEE Press (2016)
Nesi, P., Pantaleo, G., Sanesi, G.: A hadoop based platform for natural language processing of web pages and documents. J. Vis. Lang. Comput. 31, 130–138 (2015)
Zhang, Y., Chen, Y., Ma, Y.: A framework for data-driven automata design. In: Liu, L., Aoyama, M. (eds.) Requirements Engineering in the Big Data Era. CCIS, vol. 558, pp. 33–47. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48634-4_3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kozmina, N., Niedrite, L., Zemnickis, J. (2018). Information Requirements for Big Data Projects: A Review of State-of-the-Art Approaches. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds) Databases and Information Systems. DB&IS 2018. Communications in Computer and Information Science, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-319-97571-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-97571-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97570-2
Online ISBN: 978-3-319-97571-9
eBook Packages: Computer ScienceComputer Science (R0)