Skip to main content

A Critique of Observers Used in the Context of Feedback Control

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10984))

Included in the following conference series:

Abstract

One of the core tenets of feedback control is that a system’s state contains all of the information necessary to predict a system’s future response given future inputs. If the state is not directly measured then it can be estimated using a suitably designed observer. This is a powerful idea with widespread consequences. This paper will present a critique of the use of observers in feedback control. Benefits and drawbacks will be highlighted including fundamental design limitations. The analysis will be illustrated by several real world examples including robots executing a repetitive task, relay autotuning in the presence of broadband disturbances, power line signalling in AC microgrid power systems, Type 1 diabetes management and harmonic suppression in power electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis Inc., Philadelphia (1999). ISBN 0-7484-0116-4

    Google Scholar 

  2. Drakunov, S.V.: An adaptive quasioptimal filter with discontinuous parameters. Autom. Remote Control 44(9), 1167–1175 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Drakunov, S.V.: Sliding-mode observers based on equivalent control method. In: Proceedings of the 31st IEEE Conference on Decision and Control (CDC), pp. 2368–2370 (1992). https://doi.org/10.1109/CDC.1992.371368, ISBN 0-7803-0872-7

  4. Narendra, K.S.: A new approach to adaptive control using multiple models. Int. J. Adap. Control Signal Process. 26(8), 778–799 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bernat, J., Stepien, S.: Multi modelling as new estimation schema for high gain observers. Int. J. Control 88(6), 1209–1222 (2015). https://doi.org/10.1080/179.2014.1000380

    Article  MathSciNet  MATH  Google Scholar 

  6. Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Syst. Control Lett. 3, 47–52 (1983). https://doi.org/10.1016/0167-6911(83)90037-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Hammouri, H., Kinnaert, M.: A new procedure for time-varying linearization up to output injection. Syst. Control Lett. 28(3), 151–157 (1996). https://doi.org/10.1016/0167-6911(96)00022-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. Int. J. Control 57(3), 537–556 (1993). https://doi.org/10.1080/00207179308934406

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedland, B.: The Control Handbook. CRC Press, IEEE Press (1999). Ch. Observers, pp. 607–618

    Google Scholar 

  10. Chen, C.-T.: Linear Systems Theory and Design (Oxford Series in Electrical and Computer Engineering), 3rd edn. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Ellis, G.: Observers in Control Systems: A Practical Guide. Academic Press, Boston (2002)

    Google Scholar 

  12. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  13. Joesph, I., Profeta, A., Vogt, W.G., Mickle, M.H.: Disturbance estimation and compensation in linear systems. IEEE Trans. Aerosp. Electron. Syst. 26(2), 225–231 (1990)

    Article  Google Scholar 

  14. Wang, W., Gao, Z.: A comparison study of advanced state observer design techniques. In: American Control Conference (2003)

    Google Scholar 

  15. Luenberger, D.: Observers for multivariable systems. IEEE Trans. Autom. Control 11(2), 190–197 (1966)

    Article  MathSciNet  Google Scholar 

  16. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 83, 93–107 (1961)

    Article  MathSciNet  Google Scholar 

  17. Sorenson, H. (ed.): Kalman Filtering Theory and Applications. IEEE Press, New York (1983)

    Google Scholar 

  18. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: American Control Conference, pp. 1628–1632 (1995)

    Google Scholar 

  19. Ahrens, J.H., Khalil, H.K.: Closed-loop behaviour of a class of nonlinear systems under EKF-based control. IEEE Trans. Autom. Control 52(9), 536–540 (2007)

    Article  Google Scholar 

  20. Boutayeb, M., Aubry, D.: A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. Autom. Control 44(8), 1550–1556 (1999)

    Article  MathSciNet  Google Scholar 

  21. Deza, F., Busvelle, E., Gauthier, J.P., Rakotopara, D.: High gain estimation for nonlinear systems. Syst. Control Lett. 18(4), 295–299 (1992)

    Article  MathSciNet  Google Scholar 

  22. Farza, M., M’Saad, M., Triki, M., Maatoug, T.: High gain observer for a class of non-triangular systems. Syst. Control Lett. 60(1), 27–35 (2011)

    Article  MathSciNet  Google Scholar 

  23. Freidovich, L.B., Khaili, H.K.: Lyapunov-based switching control of nonlinear systems using high-gain observers. Automatica 43(1), 150–157 (2007)

    Article  MathSciNet  Google Scholar 

  24. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control (2013). https://doi.org/10.1002/rnc.3051

  25. Krener, A.J.: The convergence of the extended Kalman filter. In: Rantzer, A., Byrnes, C.I. (eds.) Directions in Mathematical Systems Theory and Optimization. LNCIS, vol. 286, pp. 173–182. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36106-5_12

    Chapter  Google Scholar 

  26. Memon, A.Y., Khalil, H.K.: Full-order high-gain observers for minimum phase nonlinear systems. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly With the 2009 28th Chinese Control Conference, (CDC/CCC 2009), pp. 6538–6543. IEEE (2009)

    Google Scholar 

  27. Nazrulla, S., Khalil, H.K.: Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Trans. Autom. Control 56(4), 802–813 (2011)

    Article  MathSciNet  Google Scholar 

  28. Reif, K., Sonnemann, F., Unbehauen, R.: An EFK-based nonlinear observer with a prescribed degree of stability. Automatica 34(9), 1119–1123 (1998)

    Article  Google Scholar 

  29. Song, Y., Grizzle, J.W.: The extended Kalman filter as a local asymptotic observer for discrete-time nonlinear systems. J. Math. Syst. Estim. Control 5(1), 59–78 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  31. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  32. Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  33. Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling-resampling perspective. Am. Stat. 46(2), 84–88 (1992)

    MathSciNet  Google Scholar 

  34. Rawlings, J.B., Bakshi, B.R.: Particle filtering and moving horizon estimation. Comput. Chem. Eng. 30, 1529–1541 (2006)

    Article  Google Scholar 

  35. Daum, F.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20(8), 57–69 (2005). Part 2: Tutorials

    Article  MathSciNet  Google Scholar 

  36. Ho, Y.C., Lee, R.C.K.: A Bayesian approach to problem in stochastic estimation and control. IEEE Trans. Autom. Control 9(5), 333–339 (1964)

    Article  MathSciNet  Google Scholar 

  37. Handschin, J.E., Mayne, D.Q.: Monte Carlo techniques to estimate the conditional expectation in multistage nonlinear filtering. Int. J. Control 9(5), 547–559 (1969)

    Article  Google Scholar 

  38. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F-Radar Signal Process. 140(2), 107–113 (1993)

    Article  Google Scholar 

  39. Goodwin, G.C., De Dona, J.A., Seron, M.M., Zhuo, X.W.: Lagrangian duality between constrained estimation and control. Automatica 41, 935–944 (2005)

    Article  MathSciNet  Google Scholar 

  40. Seron, M.M., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering and Control. Springer, London (1997). https://doi.org/10.1007/978-1-4471-0965-5

    Book  MATH  Google Scholar 

  41. Middleton, R.H., Goodwin, G.C.: Digital Control and Estimation: A Unified Approach. Prentice Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  42. Luenberger, D.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)

    Article  Google Scholar 

  43. Stein, G.: Respect the unstable. IEEE Control Syst. 23(4), 12–25 (2003)

    Article  Google Scholar 

  44. Goodwin, G.C., Evans, R.J., Lozano-Leal, R., Feick, R.: Sinusoidal disturbance rejection with application to helicopter flight data estimation. IEEE Trans. Acoust. Speech Signal Process. 34(3), 479–484 (1986)

    Article  Google Scholar 

  45. Edwards, W.J., Thomas, P., Goodwin, G.C.: Roll eccentricity control for strip rolling mills. IFAC World Congr. 20(5), 187–198 (1987)

    Google Scholar 

  46. Middleton, R.H., Goodwin, G.C., Longman, R.W.: A method for improving the dynamic accuracy of robot performing a repetitious task. Int. J. Robot. Res. 8(5), 67–74 (1989)

    Article  Google Scholar 

  47. Goodwin, G.C., Seron, M.M., Townsend, C.: A modified relay autotuner for systems having large broadband disturbances. Automatica, March 2018. Accepted for publication

    Google Scholar 

  48. Lau, K., Goodwin, G.C., M’Closkey, R.T.: Properties of modulated and demodulated, systems with implications in feedback limitations. Automatica 41, 2123–2129 (2005)

    Article  MathSciNet  Google Scholar 

  49. Lau, K., Quevedo, D.E., Vautier, B.J.G., Goodwin, G.C., Moheimani, S.O.R.: Design of modulated and demodulated controllers for flexible structures. Control Eng. Pract. 15(3), 377–388 (2007)

    Article  Google Scholar 

  50. Mirzaeva, G., Goodwin, G.C.: Harmonic suppression and delay compensation for inverters via variable horizon nonlinear model predictive control. Int. J. Control 88(7), 1400–1409 (2015)

    Article  Google Scholar 

  51. Townsend, C.D., Mirzaeva, G., Semenov, D., Goodwin, G.C.: Use of harmonic power line communication to enhance a decentralized control method of parallel inverters in an AC microgrid. In: Proceedings of the 3rd Annual Southern Power Electronics Conference (SPEC), pp. 1–6, December 2017

    Google Scholar 

  52. Goodwin, G.C., Middleton, R.H., Poor, V.H.: High speed digital signal processing and control. Proc. IEEE 80(2), 240–259 (1992)

    Article  Google Scholar 

  53. Goodwin, G.C., Agüero, J.C., Cea, M.E., Salgado, M.E., Yuz, J.I.: Sampling and sampled-data models: the interface between the continuous world and digital algorithms. IEEE Control Syst. 33(5), 34–53 (2013)

    Article  MathSciNet  Google Scholar 

  54. Middleton, R.H., Goodwin, G.C.: Digital Estimation and Control: A Unified Approach. Prentice Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  55. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5), 645–651 (1984)

    Article  MathSciNet  Google Scholar 

  56. Berner, J., Hägglund, T., Åström, K.J.: Asymmetric relay autotuning - practical features for industrial use. Control Eng. Pract. 54, 231–245 (2016)

    Article  Google Scholar 

  57. Atkinson, M.A., Eisenbarth, G.S., Michels, A.W.: Type 1 diabetes. Lancet 383(9911), 69–82 (2014)

    Article  Google Scholar 

  58. Chee, F., Fernando, T.: Closed-Loop Control of Blood Glucose, vol. 368. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74031-5

    Book  MATH  Google Scholar 

  59. Aronoff, S.L., Berkowitz, K., Shreiner, B., Want, L.: Glucose Metabolism and Regulation: beyond Insulin and glucagon. Diabetes Spectr. 17, 183–190 (2004)

    Article  Google Scholar 

  60. Doyle III, F.J., Huyett, L.M., Lee, J.B., Zisser, H.C., Dassau, E.: Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5), 1191–1197 (2014)

    Article  Google Scholar 

  61. Kovatchev, B., Cobelli, C., Renard, E., Anderson, S., Breton, M., Patek, S., Clarke, W., Bruttomesso, D., Maran, A., Costa, S., et al.: Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J. Diabetes Sci. Technol. 4(6), 1374–1381 (2010)

    Article  Google Scholar 

  62. Gondhaledar, R., Dassau, E., Doyle III, F.J.: Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 71, 237–246 (2016)

    Article  MathSciNet  Google Scholar 

  63. Kumareswaran, K.: Closed-loop insulin delivery in adults with type 1 diabetes. Ph.D. thesis, University of Cambridge (2012)

    Google Scholar 

  64. Bequette, B.: A critical assessment of algorithms and challenges in the development of the closed-loop artificial pancreas. Diabetes Technol. Ther. 7(1), 28–47 (2005)

    Article  Google Scholar 

  65. Klonoff, D.C., Cobelli, C., Kovatchev, B., Zisser, H.C.: Progress in development of an artificial pancreas. J. Diabetes Sci. Technol. 3, 1002–1004 (2009)

    Article  Google Scholar 

  66. Harvey, R.A., Wang, Y., Grosman, B., Percival, M.W., Bevier, W., Finan, D.A., Zisser, H., Seborg, D.S., Jovanovic, L., Doyle III, F.J., Dassau, E.: Quest for the artificial pancreas: combining technology with treatment. IEEE Eng. Med. Biol. Mag. 29(2), 53–62 (2010)

    Article  Google Scholar 

  67. Bequette, B.W.: Challenges and recent progress in the development of a closed-loop artificial pancreas. Annu. Rev. Control 36(2), 255–266 (2012)

    Article  Google Scholar 

  68. Cefalu, W.T., Tamborlane, M.V.: The artificial pancreas: are we there yet? Diabetes Care 37(5), 1182–1183 (2014)

    Article  Google Scholar 

  69. Kovatchev, B., Tamborlane, W.V., Cefalu, W.T., Cobelli, C.: The artificial pancreas in 2016: a digital treatment ecosystem for diabetes. Diabetes Care 39(7), 1123–1126 (2016)

    Article  Google Scholar 

  70. Weinzimer, S.A., Steil, G.M., Swan, K.L., Dziura, J., Kurtz, N., Tamborlane, W.V.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in paediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008)

    Article  Google Scholar 

  71. Bergman, R.N.: Minimal model: perspective from 2005. Horm. Res. 64(3), 8–15 (2005)

    Google Scholar 

  72. Kanderian, S.S., Weinzimer, S., Voskanyan, G., Steil, G.M.: Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes. J. Diabetes Sci. Technol. 3, 1047–1057 (2009)

    Article  Google Scholar 

  73. Oviedo, S., Vehi, J., Calm, R., Armengol, J.: A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 33(6) (2017)

    Google Scholar 

  74. Bondia, J., Dassau, E., Zisser, H., Calm, R., Vehi, J., Jovanovic, L., Doyle III, F.J.: Coordinated basal bolus infusion for tighter postprandial glucose control in insulin pump therapy. J. Diabetes Sci. Technol. 3(1), 89–97 (2009)

    Article  Google Scholar 

  75. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  76. Cameron, F.M., et al.: Closed-loop control without meal announcement in Type 1 diabetes. Diabetes Technol. Ther. 19(9), 527–532 (2017)

    Google Scholar 

  77. Hovorka, R.: The future of continuous glucose monitoring closed loop. Curr. Diabetes Rev. 4(3), 269–279 (2008)

    Article  Google Scholar 

  78. Ramkissoon, C.M., et al.: Unannounced meals in the artificial pancreas: detection using continuous glucose monitoring. Sensors 18, 884 (2008)

    Article  Google Scholar 

  79. Messer, L.H., et al.: Optimizing hybrid closed-loop theory in adolescents and emerging adults using the MiniMed 670G system. Diabetes Care 41(4), 789–796 (2018)

    Article  Google Scholar 

  80. Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control 26(1), 4–16 (1981)

    Article  Google Scholar 

  81. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Article  Google Scholar 

  82. Limebeer, D.J., Green, M., Walker, D.: Discrete time \(H_{\infty }\) control. In: 28th CDC, pp. 392–396 (1989)

    Google Scholar 

  83. Stoorvogel, A.A., Saberi, A., Chen, B.M.: The discrete time \(H_{\infty }\) control with measurement feedback. Int. J. Robust Nonlinear Control 4, 457–479 (1994)

    Article  MathSciNet  Google Scholar 

  84. Zames, G.: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and approximate inverses. IEEE Trans. Autom. Control 26, 301–320 (1981)

    Article  MathSciNet  Google Scholar 

  85. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Dover, New York (2005)

    MATH  Google Scholar 

  86. Simon, D.: Optimal State Estimation Kalman, \(H_{\infty }\) and Nonlinear Approaches. Wiley, Hoboken (2006)

    Book  Google Scholar 

  87. Jazwinski, A.H.: Stochastic Processes and Filtering. Dover, New York (2007)

    MATH  Google Scholar 

  88. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Dover, New York (2009)

    MATH  Google Scholar 

  89. Söderström, T.: Errors-in-Variables Methods in System Identification. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-75001-9

    Book  MATH  Google Scholar 

  90. Agüero, J.C., Goodwin, G.C.: Identifiability of errors-in-variables dynamic systems. Automatica 44, 371–382 (2008)

    Article  MathSciNet  Google Scholar 

  91. Stengel, R.F.: Optimal Control and Estimation. Dover, New York (1994)

    MATH  Google Scholar 

  92. Radke, A., Gao, Z.: A survey of state and disturbance observers for practitioners. In: Annual Control Conference, pp. 5183–5188 (2006)

    Google Scholar 

  93. Carrasco, D.S., Goodwin, G.C.: Connecting filtering and control sensitivity functions. Automatica 50(12), 3319–3322 (2014)

    Article  MathSciNet  Google Scholar 

  94. Goodwin, G.C., Seron, M.M.: A gold standard for optimal insulin infusion for Type 1 diabetes ingesting a meal with slow postprandial response (2018). Submitted for publication

    Google Scholar 

  95. Goodwin, G.C., Medioli, A.M., Carrasco, D.S., King, B.R., Fu, Y.: A fundamental control limitation for linear positive systems with application to Type 1 diabetes treatment. Automatica 55, 73–77 (2015)

    Article  MathSciNet  Google Scholar 

  96. Goodwin, G.C., Carrasco, D.S., Seron, M.M., Medioli, A.M.: A performance limit for a class of positive nonlinear systems. Automatica 95, 14–22 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges significant input into the development of this paper from Maria Seron. Input into specific sections has been provided by Diego Carrasco, Adrian Medioli, Richard Middleton, Mario Salgado, Bruce King, Carmel Smart, Tenele Smith, Galina Mirzaeva and Christopher Townsend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham C. Goodwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goodwin, G.C. (2018). A Critique of Observers Used in the Context of Feedback Control. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97586-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97585-6

  • Online ISBN: 978-3-319-97586-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics