Abstract
In this paper, we firstly introduce two main models based on Boid Model: Vicsek Model and Couzin Model. Then, the more authoritative and representative flocking control algorithms by Olfati-Saber and Tanner are proposed. Moreover, more extensive researches of flocking algorithm are carried out. Finally, a short discussion is included to summarize the existing research and to propose several problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shaw, E.: Fish in shools. Nat. Hist. 84(8), 40–45 (1975)
Potts, W.K.: The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309(5966), 344–345 (1984)
Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys. 22(22), 1–94 (1986)
Grunbaum, D., Okubo, A.: Modeling social animal aggregations. Front. Theor. Biol. 100, 296–325 (1994)
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)
Low, D.J.: Following the crowd. Nature 407(6803), 465–466 (2000)
Vicsek, T.: A question of scale. Nature 411(6836), 421–421 (2001)
Parrish, K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: a examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002)
Beard, R.W., Lain, T.W., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)
Zhang, H.T., Zhai, C., Chen, Z.: A general alignment repulsion algorithm for focking of multi-agent systems. IEEE Trans. Autom. Control 56(2), 430–435 (2011)
Zavlanos, M.M., Tanner, H.G., Jadbabaie, A.: Hybrid control for connectivity preserving focking. IEEE Trans. Autom. Control 54(12), 2869–2875 (2009)
Lee, D., Spong, M.W.: Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans. Autom. Control 52(8), 14691475 (2007)
Moshtagh, N., Jadbabaie, A.: Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)
Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the IEEE Conference on Decision and Control, vol. 3, pp. 2968–2973 (2001)
Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, Part I: fixed topology. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 2016–2021 (2003)
Olfati-Saber, R.: Folocking for multi-agnet dynamics systems: algorthms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)
Shi, H., Wang, L., Chu, T.G.: Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Phys. D 213(1), 51–65 (2006)
Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)
Chate, H., Ginlli, F., Gregoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. 64(3), 451–456 (2008)
Baglietto, G., Albano, E.: Natuare of the oder-disorder transition in the Vicsek model for the collective motion of self-propelled particles. Phys. Rev. 80, 050103 (2009)
Yang, W., Cao, L., Wang, X., Li, X.: Consensus in a heterogeneous influence network. Phys. Rev. 74(2), 037101 (2006)
Li, W., Wang, X.: Adaptive velocity strategy for swarm aggregation. Phys. Rev. 75, 021917 (2007)
Gao, J., Chen, Z., Cai, Y., Xu, X.: Approach to enhance convergence efficiency of Vicsek model. Control Decis. 24(8), 1269–1272 (2009)
Tian, B.M., Wang, B.H.: Optirnal view angle in collective dynamics of self-propelled agents. Phys. Rev. 79, 052102 (2009)
Yang, H., Huang, L.: Promoting collective motion of selfpropelled agents by distance-based influence. Phys. Rev. 89(3), 032813 (2014)
Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)
Dong, H., Zhao, Y., Wu, J., Gao, S.: A velocity-adaptive couzin model and its performance. Phys. A 391(5), 2145–2153 (2012)
Zhao, M., Su, H., Wang, M., Michael, Z.Q.: A weighted adaptive-velocity self-organizing model and its highspeed performance. Neurocomputing 216(C), 402–408 (2016)
Su, H., Wang, X.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)
Gu, D., Wang, Z.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Technol. 17(5), 1211–1219 (2009)
Yu, W., Chen, G.: Robust adaptive focking control of nonlinear multi-agent systems. In: IEEE Multi-Conference on Systems and Control, pp. 363–367 (2010)
Su, H., Zhang, N., Chen, M., Wang, H., Wang, X.: Adaptive flocking with a virtual leader of multiple agents governed by locally Lipschitz nonlinearity. Nonlinear Anal. Real World Appl. 23(9), 978–990 (2013)
Atrianfar, H., Haeri, M.: Flocking of multi-agent dynamic systems with virtual leader having the reduced number of informed agents. Trans. Inst. Meas. Control 35(8), 1104–1115 (2013)
Peng, Z., Wang, D., Liu, H., Sun, G.: Neural adaptive control for leader-follower flocking of networked nonholonomic agents with unknown nonlinear dynamics. Int. J. Adapt. Control Signal Process. 28(6), 479–495 (2014)
Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016)
Su, H., Wang, X., Yang, W.: Flocking in multi-agent systems with multiple virtual leaders. Asian J. Control 10(2), 238–245 (2008)
Luo, X., Li, S., Guan, X.: Flocking algorithm with multitarget tracking for multi-agent systems. Pattern Recognit. Lett. 31(9), 800–805 (2010)
Su, H.: Flocking in multi-agent systems with multiple virtual leaders based only on position measrements. Commun. Theor. Phys. 57, 801–807 (2012)
Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)
Su, H., Wang, X.: Coordinated control of multiple mobile agents with connectivity preserving. In: Proceedings of the 17th World Congress (2008)
Su, H., Wang, X., Chen, G.: A connectivity-preserving flocking algoritnm for multi-agent systems based only on position measurements. Int. J. Control 82, 1334–1343 (2009)
Wen, G., Duan, Z., Su, H., Chen, G., Yu, W.: A connectivity preserving flocking algorithm for multi-agent dynamical systems with bounded potential function. IET Control Theory Appl. 6(6), 813–821 (2012)
Dong, Y., Huang, J.: Flocking with cnnectivity preservation of multiple double ingrator systems subject to external disturbances by a distributed control law. Automatica 55, 197–203 (2015)
Wang, J., Zhao, H., Bi, Y., Shao, S., Liu, Q., Chen, X., Zeng, R., Wang, Y., Ha, L.: An improved fast flocking algorithm with obstacle avoidance for multiagent dynamic systems. J. Appl. Math. 2014(4), 1–13 (2014)
Dai, B., Li, W.: Flocking of multi-agents with arbitrary shape obstacle. In: 2014 33rd Chinese Control Conference, pp. 1311–1316 (2014)
Yang, Z., Zhang, Q., Jiang, Z., Chen, Z.: Flocking of multi-agents with time delay. Int. J. Syst. Sci. 43(11), 2125–2134 (2012)
Zhang, Q., Li, P., Yang, Z., Chen, Z.: Distance constrained based adaptive flocking control for multiagent networks with time delay. Math. Probl. Eng. 2015(8), 1–8 (2015)
Hajar, A., Mohammad, H.: Adaptive flocking control of nonlinear multi-agent systems with directed switching to pologies and saturation constraints. J. Franklin Inst. 350(6), 1545–1561 (2013)
Zhang, H., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circuits Syst. 62(6), 1599–1606 (2015)
Wang, X., Li, X., Lu, J.: Control and flocking of networked systems via pinning. IEEE Circuits Syst. Mag. 10(3), 83–91 (2010)
Su, H., Wang, X.: Distributed pinning-controlled consensus in a heterogeneous influence network. In: Su, H., Wang, X. (eds.) Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning, pp. 103–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34578-4_5
Steffen, L.: Event-triggered control of multi-agent systems with double-integrator dynamics: application to vehicle platooning and flocking algorithms. Automa. Control, 59–65 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, Y., Wang, Z., Su, H., Geng, T. (2018). A Brief Overview of Flocking Control for Multi-agent Systems. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-97586-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97585-6
Online ISBN: 978-3-319-97586-3
eBook Packages: Computer ScienceComputer Science (R0)