Skip to main content

A Brief Overview of Flocking Control for Multi-agent Systems

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10984))

Included in the following conference series:

Abstract

In this paper, we firstly introduce two main models based on Boid Model: Vicsek Model and Couzin Model. Then, the more authoritative and representative flocking control algorithms by Olfati-Saber and Tanner are proposed. Moreover, more extensive researches of flocking algorithm are carried out. Finally, a short discussion is included to summarize the existing research and to propose several problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw, E.: Fish in shools. Nat. Hist. 84(8), 40–45 (1975)

    Google Scholar 

  2. Potts, W.K.: The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309(5966), 344–345 (1984)

    Article  Google Scholar 

  3. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys. 22(22), 1–94 (1986)

    Article  Google Scholar 

  4. Grunbaum, D., Okubo, A.: Modeling social animal aggregations. Front. Theor. Biol. 100, 296–325 (1994)

    Article  Google Scholar 

  5. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  6. Low, D.J.: Following the crowd. Nature 407(6803), 465–466 (2000)

    Article  Google Scholar 

  7. Vicsek, T.: A question of scale. Nature 411(6836), 421–421 (2001)

    Article  Google Scholar 

  8. Parrish, K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: a examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002)

    Article  Google Scholar 

  9. Beard, R.W., Lain, T.W., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  10. Zhang, H.T., Zhai, C., Chen, Z.: A general alignment repulsion algorithm for focking of multi-agent systems. IEEE Trans. Autom. Control 56(2), 430–435 (2011)

    Article  Google Scholar 

  11. Zavlanos, M.M., Tanner, H.G., Jadbabaie, A.: Hybrid control for connectivity preserving focking. IEEE Trans. Autom. Control 54(12), 2869–2875 (2009)

    Article  Google Scholar 

  12. Lee, D., Spong, M.W.: Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans. Autom. Control 52(8), 14691475 (2007)

    Article  MathSciNet  Google Scholar 

  13. Moshtagh, N., Jadbabaie, A.: Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 52(4), 681–686 (2007)

    Article  MathSciNet  Google Scholar 

  14. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the IEEE Conference on Decision and Control, vol. 3, pp. 2968–2973 (2001)

    Google Scholar 

  15. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, Part I: fixed topology. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 2016–2021 (2003)

    Google Scholar 

  16. Olfati-Saber, R.: Folocking for multi-agnet dynamics systems: algorthms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  17. Shi, H., Wang, L., Chu, T.G.: Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Phys. D 213(1), 51–65 (2006)

    Article  MathSciNet  Google Scholar 

  18. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  19. Chate, H., Ginlli, F., Gregoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. 64(3), 451–456 (2008)

    Article  Google Scholar 

  20. Baglietto, G., Albano, E.: Natuare of the oder-disorder transition in the Vicsek model for the collective motion of self-propelled particles. Phys. Rev. 80, 050103 (2009)

    Google Scholar 

  21. Yang, W., Cao, L., Wang, X., Li, X.: Consensus in a heterogeneous influence network. Phys. Rev. 74(2), 037101 (2006)

    Article  Google Scholar 

  22. Li, W., Wang, X.: Adaptive velocity strategy for swarm aggregation. Phys. Rev. 75, 021917 (2007)

    Google Scholar 

  23. Gao, J., Chen, Z., Cai, Y., Xu, X.: Approach to enhance convergence efficiency of Vicsek model. Control Decis. 24(8), 1269–1272 (2009)

    MathSciNet  Google Scholar 

  24. Tian, B.M., Wang, B.H.: Optirnal view angle in collective dynamics of self-propelled agents. Phys. Rev. 79, 052102 (2009)

    Google Scholar 

  25. Yang, H., Huang, L.: Promoting collective motion of selfpropelled agents by distance-based influence. Phys. Rev. 89(3), 032813 (2014)

    Article  MathSciNet  Google Scholar 

  26. Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  27. Dong, H., Zhao, Y., Wu, J., Gao, S.: A velocity-adaptive couzin model and its performance. Phys. A 391(5), 2145–2153 (2012)

    Article  Google Scholar 

  28. Zhao, M., Su, H., Wang, M., Michael, Z.Q.: A weighted adaptive-velocity self-organizing model and its highspeed performance. Neurocomputing 216(C), 402–408 (2016)

    Article  Google Scholar 

  29. Su, H., Wang, X.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  30. Gu, D., Wang, Z.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Technol. 17(5), 1211–1219 (2009)

    Article  Google Scholar 

  31. Yu, W., Chen, G.: Robust adaptive focking control of nonlinear multi-agent systems. In: IEEE Multi-Conference on Systems and Control, pp. 363–367 (2010)

    Google Scholar 

  32. Su, H., Zhang, N., Chen, M., Wang, H., Wang, X.: Adaptive flocking with a virtual leader of multiple agents governed by locally Lipschitz nonlinearity. Nonlinear Anal. Real World Appl. 23(9), 978–990 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Atrianfar, H., Haeri, M.: Flocking of multi-agent dynamic systems with virtual leader having the reduced number of informed agents. Trans. Inst. Meas. Control 35(8), 1104–1115 (2013)

    Article  Google Scholar 

  34. Peng, Z., Wang, D., Liu, H., Sun, G.: Neural adaptive control for leader-follower flocking of networked nonholonomic agents with unknown nonlinear dynamics. Int. J. Adapt. Control Signal Process. 28(6), 479–495 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016)

    Article  MathSciNet  Google Scholar 

  36. Su, H., Wang, X., Yang, W.: Flocking in multi-agent systems with multiple virtual leaders. Asian J. Control 10(2), 238–245 (2008)

    Article  MathSciNet  Google Scholar 

  37. Luo, X., Li, S., Guan, X.: Flocking algorithm with multitarget tracking for multi-agent systems. Pattern Recognit. Lett. 31(9), 800–805 (2010)

    Article  Google Scholar 

  38. Su, H.: Flocking in multi-agent systems with multiple virtual leaders based only on position measrements. Commun. Theor. Phys. 57, 801–807 (2012)

    Article  Google Scholar 

  39. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

    Article  Google Scholar 

  40. Su, H., Wang, X.: Coordinated control of multiple mobile agents with connectivity preserving. In: Proceedings of the 17th World Congress (2008)

    Google Scholar 

  41. Su, H., Wang, X., Chen, G.: A connectivity-preserving flocking algoritnm for multi-agent systems based only on position measurements. Int. J. Control 82, 1334–1343 (2009)

    Article  Google Scholar 

  42. Wen, G., Duan, Z., Su, H., Chen, G., Yu, W.: A connectivity preserving flocking algorithm for multi-agent dynamical systems with bounded potential function. IET Control Theory Appl. 6(6), 813–821 (2012)

    Article  MathSciNet  Google Scholar 

  43. Dong, Y., Huang, J.: Flocking with cnnectivity preservation of multiple double ingrator systems subject to external disturbances by a distributed control law. Automatica 55, 197–203 (2015)

    Article  Google Scholar 

  44. Wang, J., Zhao, H., Bi, Y., Shao, S., Liu, Q., Chen, X., Zeng, R., Wang, Y., Ha, L.: An improved fast flocking algorithm with obstacle avoidance for multiagent dynamic systems. J. Appl. Math. 2014(4), 1–13 (2014)

    Google Scholar 

  45. Dai, B., Li, W.: Flocking of multi-agents with arbitrary shape obstacle. In: 2014 33rd Chinese Control Conference, pp. 1311–1316 (2014)

    Google Scholar 

  46. Yang, Z., Zhang, Q., Jiang, Z., Chen, Z.: Flocking of multi-agents with time delay. Int. J. Syst. Sci. 43(11), 2125–2134 (2012)

    Article  MathSciNet  Google Scholar 

  47. Zhang, Q., Li, P., Yang, Z., Chen, Z.: Distance constrained based adaptive flocking control for multiagent networks with time delay. Math. Probl. Eng. 2015(8), 1–8 (2015)

    MathSciNet  Google Scholar 

  48. Hajar, A., Mohammad, H.: Adaptive flocking control of nonlinear multi-agent systems with directed switching to pologies and saturation constraints. J. Franklin Inst. 350(6), 1545–1561 (2013)

    Article  MathSciNet  Google Scholar 

  49. Zhang, H., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circuits Syst. 62(6), 1599–1606 (2015)

    Article  MathSciNet  Google Scholar 

  50. Wang, X., Li, X., Lu, J.: Control and flocking of networked systems via pinning. IEEE Circuits Syst. Mag. 10(3), 83–91 (2010)

    Article  Google Scholar 

  51. Su, H., Wang, X.: Distributed pinning-controlled consensus in a heterogeneous influence network. In: Su, H., Wang, X. (eds.) Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning, pp. 103–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34578-4_5

    Chapter  MATH  Google Scholar 

  52. Steffen, L.: Event-triggered control of multi-agent systems with double-integrator dynamics: application to vehicle platooning and flocking algorithms. Automa. Control, 59–65 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Housheng Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Wang, Z., Su, H., Geng, T. (2018). A Brief Overview of Flocking Control for Multi-agent Systems. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97586-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97585-6

  • Online ISBN: 978-3-319-97586-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics