Skip to main content

Gait Transition Between Simple and Complex Locomotion in Humanoid Robots

  • Conference paper
  • First Online:
From Animals to Animats 15 (SAB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10994))

Included in the following conference series:

  • 871 Accesses

Abstract

In this paper, we present the gait transition between rhythmic and non-rhythmic behaviors during walking of a humanoid robot Nao. In biological studies, two kinds of locomotion were observed in cat during walking on a flat terrain and on a ladder (simple and complex walking). Both behaviors were obtained on the robot thanks to the multi-layers multi-patterns central pattern generator model. We generate the rhythmic behavior from the non-rhythmic one based on the frequency of interaction between the robot feet and the ground surface during the complex locomotion. Although the complex locomotion requires a sequence of descending control signals to drive each robot step, the simple one requires only a triggering signal to generate the periodic movement. The overall system behavior fits with the biological findings in cat locomotion.

Video about this paper: https://youtu.be/-Mrsa0l_na8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shik, M.L., Orlovsky, G.N.: Neurophysiology of locomotor automatism. Physiol. Rev. 56(3), 465–501 (1976)

    Article  Google Scholar 

  2. Whelan, P.J.: Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49(5), 481–515 (1996)

    Article  Google Scholar 

  3. Graham-Brown, T.: The intrinsic factors in the act of progression in the mammal. Proc. Royal Soc. B Biol. Sci. 84(572), 308–319 (1911)

    Article  Google Scholar 

  4. Schaal, S., Sternad, D., Osu, R., Kawato, M.: Rhythmic arm movement is not discrete. Nature Neurosci. 7(10), 1136–1143 (2004)

    Article  Google Scholar 

  5. Lefevre, P., Ronsse, R., Sternad, D.: A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21(5), 1335–1370 (2009)

    Article  MathSciNet  Google Scholar 

  6. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Wörgötter, F.: Adaptive, fast walking in a biped robot under neuronal control and learning. PLOS Comput. Biol. 3(7), 1–16 (2007)

    Article  Google Scholar 

  7. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  8. Nassour, J., Hénaff, P., Ben Ouezdou, F., Cheng, G.: A study of adaptive locomotive behaviors of a biped robot: patterns generation and classification. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 313–324. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15193-4_30

    Chapter  Google Scholar 

  9. Owaki, D., Ishiguro, A.: A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep. 7 (2017). Article no. 277

    Google Scholar 

  10. Danner, S.M., Shevtsova, N.A., Frigon, A., Rybak, I.A.: Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 6, e31050 (2017)

    Google Scholar 

  11. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  12. Marlinski, V., Nilaweera, W.U., Zelenin, P.V., Sirota, M.G., Beloozerova, I.N.: Signals from the ventrolateral thalamus to the motor cortex during locomotion. J. Neuro Physiol. 107(1), 455–472 (2011)

    Google Scholar 

  13. Rowat, P.F., Selverston, A.I.: Learning algorithms for oscillatory networks with gap junctions and membrane currents. Network 2(1), 17–41 (1991)

    Article  MathSciNet  Google Scholar 

  14. McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)

    Article  Google Scholar 

  15. Vukobratovic, M., Borovac, B.: Zero-moment point – thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nassour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaghani, S., Pan, Y., Hamker, F., Nassour, J. (2018). Gait Transition Between Simple and Complex Locomotion in Humanoid Robots. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics