Abstract
To combine neural learning with the sequential detection of hierarchies of sensory features, and to facilitate planning and script execution, we propose Request Confirmation Networks (ReCoNs). ReCoNs are spreading activation networks with units that contain an activation and a state, and are connected by typed directed links that indicate partonomic relations and spatial or temporal succession. By passing activation along the links, ReCoNs can perform both neural computations and controlled script execution. We demonstrate the application of ReCoNs in the context of performing simple arithmetic, based on camera images of mathematical expressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bach, J.: Principles of Synthetic Intelligence – An Architecture of Motivated Cognition. Oxford University Press, Oxford (2009)
Bach, J.: MicroPsi 2: the next generation of the MicroPsi framework. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 11–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_2
Bach, J., Herger, P.: Request confirmation networks for neuro-symbolic script execution. In: Besold, T.R. Garcez, A.D. Marcus, G.F. Miikkulainen, R. (eds.) COCO’2015 Proceedings of the 2015th International Conference on Cognitive Computation: Integrating Neural and Symbolic Approaches, vol. 1583, pp. 43–51 (2015)
Bach, J., Vuine, R.: Designing Agents with MicroPsi Node Nets. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 164–178. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39451-8_13
Deiber, M.P., Passingham, R.E., Colebatch, J.G., Friston, K.J., Nixon, P.D., Frackowiak, R.S.J.: Cortical areas and the selection of movement: a study with positron emission tomography. Exp. Brain Res. 84(2), 393–402 (1991)
Frith, C.D., Friston, K.J., Liddle, P.F., Frackowiak, R.S.: Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244(1311), 241–246 (1991)
Gallagher, K.: Request Confirmation Networks: A cortically inspired approach to neuro-symbolic script execution. MA Thesis, Harvard University, May 2018
Hatzilygeroudis, I., Prentzas, J.: Neuro-symbolic approaches for knowledge representation in expert systems. Int. J. Hybrid Intell. Syst. 1(3–4), 111–126 (2004)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Koechlin, E., Basso, G., Pietrini, P., Panzer, S., Grafman, J.: The role of the anterior prefrontal cortex in human cognition. Nature 399(6732), 148 (1999)
LeCun, Y.: The MNIST database of handwritten digits [Data file] (1998). http://yann.lecun.com/exdb/mnist/
Nano, X.: Handwritten math symbols dataset [Data file] (2016). https://www.kaggle.com/xainano/handwrittenmathsymbols
Tanji, J., Hoshi, E.: Behavioral planning in the prefrontal cortex. Curr. Opin. Neurobiol. 11(2), 164–170 (2001)
Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artif. Intell. 70, 119–165 (1994)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on Machine learning, pp. 1096–1103 (2008)
Acknowledgements
The implementation and further development of MicroPsi and the MESH editor would not be possible without the contributions of Ronnie Vuine, Dominik Welland and Priska Herger. The implementation presented here is based on a thesis by Gallagher (2018). We are grateful for generous support by and discussions with Dietrich Dörner, Martin Nowak and the Epstein Foundation. Current work on MicroPsi is supported by the Program of Evolutionary Dynamics at Harvard University, Humanity Plus and MicroPsi Industries GmbH, Berlin.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bach, J., Gallagher, K. (2018). Request Confirmation Networks in MicroPsi 2. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-97676-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97675-4
Online ISBN: 978-3-319-97676-1
eBook Packages: Computer ScienceComputer Science (R0)