Skip to main content

Request Confirmation Networks in MicroPsi 2

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10999))

Included in the following conference series:

Abstract

To combine neural learning with the sequential detection of hierarchies of sensory features, and to facilitate planning and script execution, we propose Request Confirmation Networks (ReCoNs). ReCoNs are spreading activation networks with units that contain an activation and a state, and are connected by typed directed links that indicate partonomic relations and spatial or temporal succession. By passing activation along the links, ReCoNs can perform both neural computations and controlled script execution. We demonstrate the application of ReCoNs in the context of performing simple arithmetic, based on camera images of mathematical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bach, J.: Principles of Synthetic Intelligence – An Architecture of Motivated Cognition. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  • Bach, J.: MicroPsi 2: the next generation of the MicroPsi framework. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 11–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_2

    Chapter  Google Scholar 

  • Bach, J., Herger, P.: Request confirmation networks for neuro-symbolic script execution. In: Besold, T.R. Garcez, A.D. Marcus, G.F. Miikkulainen, R. (eds.) COCO’2015 Proceedings of the 2015th International Conference on Cognitive Computation: Integrating Neural and Symbolic Approaches, vol. 1583, pp. 43–51 (2015)

    Google Scholar 

  • Bach, J., Vuine, R.: Designing Agents with MicroPsi Node Nets. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 164–178. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39451-8_13

    Chapter  Google Scholar 

  • Deiber, M.P., Passingham, R.E., Colebatch, J.G., Friston, K.J., Nixon, P.D., Frackowiak, R.S.J.: Cortical areas and the selection of movement: a study with positron emission tomography. Exp. Brain Res. 84(2), 393–402 (1991)

    Article  Google Scholar 

  • Frith, C.D., Friston, K.J., Liddle, P.F., Frackowiak, R.S.: Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244(1311), 241–246 (1991)

    Article  Google Scholar 

  • Gallagher, K.: Request Confirmation Networks: A cortically inspired approach to neuro-symbolic script execution. MA Thesis, Harvard University, May 2018

    Google Scholar 

  • Hatzilygeroudis, I., Prentzas, J.: Neuro-symbolic approaches for knowledge representation in expert systems. Int. J. Hybrid Intell. Syst. 1(3–4), 111–126 (2004)

    MATH  Google Scholar 

  • Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  • Koechlin, E., Basso, G., Pietrini, P., Panzer, S., Grafman, J.: The role of the anterior prefrontal cortex in human cognition. Nature 399(6732), 148 (1999)

    Article  Google Scholar 

  • LeCun, Y.: The MNIST database of handwritten digits [Data file] (1998). http://yann.lecun.com/exdb/mnist/

  • Nano, X.: Handwritten math symbols dataset [Data file] (2016). https://www.kaggle.com/xainano/handwrittenmathsymbols

  • Tanji, J., Hoshi, E.: Behavioral planning in the prefrontal cortex. Curr. Opin. Neurobiol. 11(2), 164–170 (2001)

    Article  Google Scholar 

  • Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artif. Intell. 70, 119–165 (1994)

    Article  Google Scholar 

  • Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on Machine learning, pp. 1096–1103 (2008)

    Google Scholar 

Download references

Acknowledgements

The implementation and further development of MicroPsi and the MESH editor would not be possible without the contributions of Ronnie Vuine, Dominik Welland and Priska Herger. The implementation presented here is based on a thesis by Gallagher (2018). We are grateful for generous support by and discussions with Dietrich Dörner, Martin Nowak and the Epstein Foundation. Current work on MicroPsi is supported by the Program of Evolutionary Dynamics at Harvard University, Humanity Plus and MicroPsi Industries GmbH, Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joscha Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bach, J., Gallagher, K. (2018). Request Confirmation Networks in MicroPsi 2. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97676-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97675-4

  • Online ISBN: 978-3-319-97676-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics