Abstract
This article proposes a novel minimalist bio-inspired associative memory (AM) mechanism based on a spiking neural network acting as a controller in simple virtual and physical robots. As such, several main features of a general AM concept were reproduced. Using the strength of temporal coding at the single spike resolution level, this study approaches the AM phenomenon with basic examples in the visual modality. Specifically, the AM include varying time delays in synaptic links and asymmetry in the spike-timing dependent plasticity learning rules to solve visual tasks of pattern-matching, pattern-completion and noise-tolerance for autoassociative and heteroassociative memories. This preliminary work could serve as a step toward future comparative analysis with traditional artificial neural networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Rolls, E.: The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7(74), 10–3389 (2013)
Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99(2), 89–103 (2008)
Kohonen, T.: Associative Memory: A System-Theoretical Approach, vol. 17. Springer Science & Business Media, Heidelberg (1978). https://doi.org/10.1007/978-3-642-96384-1
Carpenter, G.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)
Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)
Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60 (1988)
Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Netw. 22(5), 568–578 (2009)
Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Amit, D.: The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18(04), 617–626 (1995)
Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14(4), 789–802 (2003)
Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Zhu, S., Hammerstrom, D.: Reinforcement learning in associative memory. In: International Joint Conference on Neural Networks, pp. 1346–1350 (2003)
Tangruamsub, S., Kawewong, A., Tsuboyama, M., Hasegawa, O.: Self-organizing incremental associative memory-based robot navigation. IEICE Trans. Inf. Syst. 95(10), 2415–2425 (2012)
Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)
Zamani, M., Sadeghian, A., Chartier, S.: A bidirectional associative memory based on cortical spiking neurons using temporal coding. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)
Tan, C., Tang, H., Cheu, E., Hu, J.: A computationally efficient associative memory model of hippocampus CA3 by spiking neurons. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)
Hu, J., Tang, H., Tan, K.C., Gee, S.B.: A spiking neural network model for associative memory using temporal codes. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. PALO, vol. 1, pp. 561–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13359-1_43
Komer, B., Eliasmith, C.: A unified theoretical approach for biological cognition and learning. Curr. Opin. Behav. Sci. 11, 14–20 (2016)
Touzet, C.: Modeling and simulation of elementary robot behaviors using associative memories. Int. J. Adv. Robot. Syst. 3(2), 165–170 (2006)
Jimenez-Romero, C., Sousa-Rodrigues, D., Johnson, J.: Designing behaviour in bio-inspired robots using associative topologies of spiking-neural-networks. arXiv preprint arXiv:1509.07035 (2015)
Sommer, F., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Netw. 14(6), 825–834 (2001)
Yu, Q., Tang, H., Tan, K., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)
Knight, J., al.: Efficient SpiNNaker simulation of a heteroassociative memory using the neural engineering framework. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 5210–5217, July 2016
Shouval, H., Kalantzis, G.: Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93(2), 1069–1073 (2005)
Bugmann, G., Christodoulou, C.: Learning temporal correlation between input neurons by using Dendritic propagation delays and stochastic synapses. In: Fourth Neural Coding Workshop. pp. 10–15. Citeseer (2001)
Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connect. Sci. 18(1), 1–22 (2006)
Bi, G., Poo, M.: Activity-induced synaptic modifications in Hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464–10472 (1998)
Froemke, R., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)
Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci. 31, 25–46 (2008)
Cyr, A., Boukadoum, M.: Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks. Adapt. Behav. 20, 257–272 (2012)
Bi, G., Wang, H.: Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol. Behav. 77(4), 551–555 (2002)
Cyr, A., Boukadoum, M., Poirier, P.: AI-SIMCOG: a simulator for spiking neurons and multiple animats behaviours. Neural Comput. Appl. 18(5), 431–446 (2009)
Ardiel, E., Rankin, C.: An elegant mind: learning and memory in Caenorhabditis elegans. Learn. Mem. 17(4), 191–201 (2010)
Hawkins, R., Byrne, J.: Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7(5), a021709 (2015)
Lukowiak, K., et al.: Associative learning and memory in Lymnaea stagnalis: how well do they remember? J. Exp. Biol. 206(13), 2097–2103 (2003)
Siwicki, K., Ladewski, L.: Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64(2), 225–238 (2003)
Avarguès-Weber, A., Giurfa, M.: Conceptual learning by miniature brains. Proc. R. Soc. Lond. B Biol. Sci. 280(1772), 20131907 (2013)
Bianco, I., Kampff, A., Engert, F.: Prey capture behavior evoked by simple visual stimuli in Larval Zebrafish. Front. Syst. Neurosci. 5, 101 (2011)
Giurfa, M.: Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5), 285–294 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Cyr, A., Thériault, F., Ross, M., Chartier, S. (2018). Associative Memory: An Spiking Neural Network Robotic Implementation. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-97676-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97675-4
Online ISBN: 978-3-319-97676-1
eBook Packages: Computer ScienceComputer Science (R0)