Skip to main content

Associative Memory: An Spiking Neural Network Robotic Implementation

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2018)

Abstract

This article proposes a novel minimalist bio-inspired associative memory (AM) mechanism based on a spiking neural network acting as a controller in simple virtual and physical robots. As such, several main features of a general AM concept were reproduced. Using the strength of temporal coding at the single spike resolution level, this study approaches the AM phenomenon with basic examples in the visual modality. Specifically, the AM include varying time delays in synaptic links and asymmetry in the spike-timing dependent plasticity learning rules to solve visual tasks of pattern-matching, pattern-completion and noise-tolerance for autoassociative and heteroassociative memories. This preliminary work could serve as a step toward future comparative analysis with traditional artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://aifuture.com/res/2018-am.

References

  1. Rolls, E.: The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7(74), 10–3389 (2013)

    Google Scholar 

  2. Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99(2), 89–103 (2008)

    Article  MathSciNet  Google Scholar 

  3. Kohonen, T.: Associative Memory: A System-Theoretical Approach, vol. 17. Springer Science & Business Media, Heidelberg (1978). https://doi.org/10.1007/978-3-642-96384-1

    Book  MATH  Google Scholar 

  4. Carpenter, G.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)

    Article  Google Scholar 

  5. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  6. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  7. Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. 18(1), 49–60 (1988)

    Article  MathSciNet  Google Scholar 

  8. Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Netw. 22(5), 568–578 (2009)

    Article  Google Scholar 

  9. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  10. Amit, D.: The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18(04), 617–626 (1995)

    Article  Google Scholar 

  11. Sandberg, A., Tegnér, J., Lansner, A.: A working memory model based on fast Hebbian learning. Netw. Comput. Neural Syst. 14(4), 789–802 (2003)

    Article  Google Scholar 

  12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  13. Zhu, S., Hammerstrom, D.: Reinforcement learning in associative memory. In: International Joint Conference on Neural Networks, pp. 1346–1350 (2003)

    Google Scholar 

  14. Tangruamsub, S., Kawewong, A., Tsuboyama, M., Hasegawa, O.: Self-organizing incremental associative memory-based robot navigation. IEICE Trans. Inf. Syst. 95(10), 2415–2425 (2012)

    Article  Google Scholar 

  15. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  16. Zamani, M., Sadeghian, A., Chartier, S.: A bidirectional associative memory based on cortical spiking neurons using temporal coding. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  17. Tan, C., Tang, H., Cheu, E., Hu, J.: A computationally efficient associative memory model of hippocampus CA3 by spiking neurons. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2013)

    Google Scholar 

  18. Hu, J., Tang, H., Tan, K.C., Gee, S.B.: A spiking neural network model for associative memory using temporal codes. In: Handa, H., Ishibuchi, H., Ong, Y.-S., Tan, K.C. (eds.) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. PALO, vol. 1, pp. 561–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13359-1_43

    Chapter  Google Scholar 

  19. Komer, B., Eliasmith, C.: A unified theoretical approach for biological cognition and learning. Curr. Opin. Behav. Sci. 11, 14–20 (2016)

    Article  Google Scholar 

  20. Touzet, C.: Modeling and simulation of elementary robot behaviors using associative memories. Int. J. Adv. Robot. Syst. 3(2), 165–170 (2006)

    Article  Google Scholar 

  21. Jimenez-Romero, C., Sousa-Rodrigues, D., Johnson, J.: Designing behaviour in bio-inspired robots using associative topologies of spiking-neural-networks. arXiv preprint arXiv:1509.07035 (2015)

  22. Sommer, F., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Netw. 14(6), 825–834 (2001)

    Article  Google Scholar 

  23. Yu, Q., Tang, H., Tan, K., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)

    Article  Google Scholar 

  24. Knight, J., al.: Efficient SpiNNaker simulation of a heteroassociative memory using the neural engineering framework. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 5210–5217, July 2016

    Google Scholar 

  25. Shouval, H., Kalantzis, G.: Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93(2), 1069–1073 (2005)

    Article  Google Scholar 

  26. Bugmann, G., Christodoulou, C.: Learning temporal correlation between input neurons by using Dendritic propagation delays and stochastic synapses. In: Fourth Neural Coding Workshop. pp. 10–15. Citeseer (2001)

    Google Scholar 

  27. Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connect. Sci. 18(1), 1–22 (2006)

    Article  Google Scholar 

  28. Bi, G., Poo, M.: Activity-induced synaptic modifications in Hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464–10472 (1998)

    Article  Google Scholar 

  29. Froemke, R., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)

    Article  Google Scholar 

  30. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Ann. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  31. Cyr, A., Boukadoum, M.: Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks. Adapt. Behav. 20, 257–272 (2012)

    Article  Google Scholar 

  32. Bi, G., Wang, H.: Temporal asymmetry in spike timing-dependent synaptic plasticity. Physiol. Behav. 77(4), 551–555 (2002)

    Article  Google Scholar 

  33. Cyr, A., Boukadoum, M., Poirier, P.: AI-SIMCOG: a simulator for spiking neurons and multiple animats behaviours. Neural Comput. Appl. 18(5), 431–446 (2009)

    Article  Google Scholar 

  34. Ardiel, E., Rankin, C.: An elegant mind: learning and memory in Caenorhabditis elegans. Learn. Mem. 17(4), 191–201 (2010)

    Article  Google Scholar 

  35. Hawkins, R., Byrne, J.: Associative learning in invertebrates. Cold Spring Harb. Perspect. Biol. 7(5), a021709 (2015)

    Article  Google Scholar 

  36. Lukowiak, K., et al.: Associative learning and memory in Lymnaea stagnalis: how well do they remember? J. Exp. Biol. 206(13), 2097–2103 (2003)

    Article  Google Scholar 

  37. Siwicki, K., Ladewski, L.: Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav. Process. 64(2), 225–238 (2003)

    Article  Google Scholar 

  38. Avarguès-Weber, A., Giurfa, M.: Conceptual learning by miniature brains. Proc. R. Soc. Lond. B Biol. Sci. 280(1772), 20131907 (2013)

    Article  Google Scholar 

  39. Bianco, I., Kampff, A., Engert, F.: Prey capture behavior evoked by simple visual stimuli in Larval Zebrafish. Front. Syst. Neurosci. 5, 101 (2011)

    Article  Google Scholar 

  40. Giurfa, M.: Cognition with few neurons: higher-order learning in insects. Trends Neurosci. 36(5), 285–294 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Cyr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cyr, A., Thériault, F., Ross, M., Chartier, S. (2018). Associative Memory: An Spiking Neural Network Robotic Implementation. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97676-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97675-4

  • Online ISBN: 978-3-319-97676-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics