Abstract
Partially occlusion is a common difficulty arisen in applications of face recognition, and many algorithms based on linear representation may pay attention to such cases. In this paper, we consider the partial occlusion problem via inner-class linear regression. Specifically, we develop a matrix regression-based classification (MRC) method in which every sample from the same class are represented as matrices instead of vector and adopted to encode a probe image under. In the regression step, a L21-norm based matrix regression model is proposed, which can efficiently depress the effect of occlusion in probe image. Accordingly, an efficient algorithm is derived to optimize the proposed objective function. In addition, we argue that the corrupted pixels in probe image should not be considered in decision step. Thus, we introduce a robust threshold to dynamically eliminate the corrupted rows in probe image before making decision. Performance of MRC is evaluated on several datasets and the results are compared with those of other state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
De La Torre, F., Black, M.J.: A framework for robust subspace learning. Int. J. Comput. Vis. 54(1–3), 117–142 (2003)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2011)
Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)
Martinez, A.M.: The AR face database. CVC Technical report (1998)
Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)
Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint L2, 1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The feret database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Ren, C.X., Dai, D.Q., Yan, H.: Robust classification using L2, 1-norm based regression model. Pattern Recogn. 45(7), 2708–2718 (2012)
Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Applications of Computer Vision Proceedings of the Second IEEE Workshop on 1994, pp. 138–142. IEEE (1994)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings Automatic Face and Gesture Recognition Fifth IEEE International Conference on 2002, pp. 53–58. IEEE (2002)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Yang, J., Luo, L., Qian, J., Tai, Y., Zhang, F., Xu, Y.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 156–171 (2017)
Yang, M., Zhang, L., Yang, J., Zhang, D.: Regularized robust coding for face recognition. IEEE Trans. Image Process. 22(5), 1753–1766 (2013)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE international conference on 2011 Computer vision (ICCV), pp. 471–478 IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Mi, JX., Zhu, Q., Luo, Z. (2018). Matrix Regression-Based Classification for Face Recognition. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-97785-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97784-3
Online ISBN: 978-3-319-97785-0
eBook Packages: Computer ScienceComputer Science (R0)