Abstract
In this paper, we present a method for content-free band selection and reduction for hyperspectral imaging. Here, we reconstruct the spectral image irradiance in the wild making use of a reduced set of wavelength-indexed bands at input. To this end, we use of a deep neural net which employs a learnt sparse input connection map to select relevant bands at input. Thus, the network can be viewed as learning a non-linear, locally supported generic transformation between a subset of input bands at a pixel neighbourhood and the scene irradiance of the central pixel at output. To obtain the sparse connection map we employ a variant of the Levenberg-Marquardt algorithm (LMA) on manifolds which is devoid of the damping factor often used in LMA approaches. We show results on band selection and illustrate the utility of the connection map recovered by our approach for spectral reconstruction using a number of alternatives on widely available datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset can be downloaded from: http://www.comp.nus.edu.sg/~whitebal/spectral_reconstruction/.
- 2.
Downloadable at: http://www.scyllarus.com.
References
Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)
Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks. In: NIPS (2016)
Cariou, C., Chehdi, K., Moan, S.L.: Bandclust: an unsupervised band reduction method for hyperspectral remote sensing. IEEE Geosci. Remote Sens. Lett. 8(3), 565–569 (2011)
Chang, J.Y., Lee, K.M., Lee, S.U.: Shape from shading using graph cuts. In: Proceedings of the International Conference on Image Processing (2003)
Ejaz, T., Horiuchi, T., Ohashi, G., Shimodaira, Y.: Development of a camera system for the acquisition of high-fidelity colors. IEICE Trans. Electron. E–89C(10), 1441–1447 (2006)
Finlayson, G.D., Drew, M.S.: The maximum ignorance assumption with positivity. In: Proceedings of the IS&T/SID 4th Color Imaging Conference, pp. 202–204 (1996)
Gu, L., Huynh, C.P., Robles-Kelly, A.: Material-specific user colour profiles from imaging spectroscopy data. In: IEEE International Conference on Computer Vision (2011)
Gu, L., Robles-Kelly, A., Zhou, J.: Efficient estimation of reflectance parameters from imaging spectroscopy. IEEE Trans. Image Process. 99, 1 (2013)
Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.D.B.: Band selection for hyperspectral image classification using mutual information. IEEE Geosci. Remote Sens. Lett. 3(4), 522–526 (2006)
Judd, D.B.: Report of U.S. secretariat committee on colorimetry and artificial daylight, p. 11 (1951)
Kawakami, R., Zhao, H., Tan, R., Ikeuchi, K.: Camera spectral sensitivity and white balance estimation from sky images. Int. J. Comput. Vis. 105(3), 187–204 (2013)
Koray, K., Sermanet, P., Boureau, Y.L., Gregor, K., Mathieu, M., LeCun, Y.: Learning convolutional feature hierarchies for visual recognition. In: NIPS, pp. 1090–1098 (2010)
Longere, P., Brainard, D.H.: Simulation of digital camera images from hyperspectral input. In: van den Branden Lambrecht, C. (ed.) Vision Models and Applications to Image and Video Processing, pp. 123–150. Kluwer (2001)
Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)
Nguyen, R.M.H., Prasad, D.K., Brown, M.S.: Raw-to-raw: mapping between image sensor color responses. In: Computer Vision and Pattern Recognition (2014)
Nguyen, R.M.H., Prasad, D.K., Brown, M.S.: Training-based spectral reconstruction from a single RGB image. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 186–201. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_13
Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000). https://doi.org/10.1007/978-0-387-40065-5
Robles-Kelly, A.: Single image spectral reconstruction for multimedia applications. In: ACM International Conference on Multimedia, pp. 251–260 (2015)
Sharma, G., Vrhel, M.J., Trussell, H.J.: Color imaging for multimedia. Proc. IEEE 86(6), 1088–1108 (1998)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)
Zare, A., Gader, P.: Hyperspectral band selection and endmember detection using sparsity promoting priors. IEEE Geosci. Remote Sens. Lett. 5(2), 256–260 (2008)
Zhao, H., Robles-Kelly, A., Zhou, J., Lu, J., Yang, J.: Graph attribute embedding via riemannian submersion learning. Comput. Vis. Image Underst. 115(7), 962–975 (2011)
Acknowledgment
The authors would like to thank NVIDIA for providing the GPUs used to obtain the results shown in this paper through their Academic grant programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, R., Robles-Kelly, A., Álvarez, J. (2018). Context Free Band Reduction Using a Convolutional Neural Network. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-97785-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97784-3
Online ISBN: 978-3-319-97785-0
eBook Packages: Computer ScienceComputer Science (R0)