Skip to main content

Towards a Reference Architecture for Swarm Intelligence-Based Internet of Things

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2017)

Abstract

The Internet of Things (IoT) represents the global network which interconnects digital and physical entities. It aims at providing objects with intelligence that allows them to perceive, decide and cooperate with other objects, machines, systems and even humans to enable a whole new class of applications and services. Agent-Based Computing paradigm has been exploited to deal with the IoT system development. Many research works focus on making objects able to think by themselves thus imitating human brain. Swarm intelligence-based systems provide decentralized, self-organized and robust systems with consideration of coordination frameworks. We explore in this paper the exploitation of swarm intelligence-based features in IoT-based systems. Therefore, we present a reference swarm-based architectural model that enables cooperation among devices in IoT systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  2. Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., Russo, W.: An agent-based middleware for cooperating smart objects. In: Corchado, J.M., et al. (eds.) PAAMS 2013. CCIS, vol. 365, pp. 387–398. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38061-7_36

    Chapter  Google Scholar 

  3. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Towards a development methodology for smart object-oriented IoT systems: a metamodel approach. In: International Conference on Systems, Man, and Cybernetics, pp. 1297–1302 (2015)

    Google Scholar 

  4. Fortino, G., Trunfio, P. (eds.): Internet of Things Based on Smart Objects. IT. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00491-4

    Book  Google Scholar 

  5. Fortino, G.: Agents meet the IoT: toward ecosystems of networked smart objects. IEEE Syst. Man Cybernet. Mag. 2(2), 43–47 (2016)

    Article  Google Scholar 

  6. Fortino, G., Russo, W., Savaglio, C.: Agent-oriented modeling and simulation of IoT networks. In: FedCSIS, pp. 1449–1452 (2016)

    Google Scholar 

  7. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A honey-bee mating optimization algorithm for educational timetabling problems. Eur. J. Oper. Res. 216(3), 533–543 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)

    Article  Google Scholar 

  9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 1, no. 7. Oxford University Press (1999)

    Google Scholar 

  10. El Zoghby, N., Loscri, V., Natalizio, V., Cherfaoui, V.: Robot cooperation and swarm intelligence. In: Wireless Sensor and Robot Networks: From Topology Control to Communication Aspects, pp. 168–201 (2014)

    Chapter  Google Scholar 

  11. Suryani, V., Sulistyo, S., Widyawan, W.: Trust-based privacy for Internet of Things. Int. J. Electr. Comput. Eng. 6(5), 2396–2402 (2016)

    Google Scholar 

  12. Lu, Y., Hu, W.: Study on the application of ant colony algorithm in the route of Internet of Things. Int. J. Smart Home 7(3), 365–371 (2013)

    Google Scholar 

  13. Sabbani, I., Youssfi, M., Bouattane, O.: A multi-agent based on ant colony model for urban traffic management. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 793–798 (2016)

    Google Scholar 

  14. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Congress on Evolutionary Computation, vol. 2, pp. 1470–1477 (1999)

    Google Scholar 

  15. Said, O.: Analysis, design and simulation of Internet of Things routing algorithm based on ant colony optimization. Int. J. Commun. Syst. 30(8), 1–20 (2016)

    MathSciNet  Google Scholar 

  16. Jiang, Y., Ding, Q., Wang, X.: A recovery model for production scheduling: combination of disruption management and Internet of Things. Sci. Program. 2016, 1–9 (2016). Article ID 8264879

    Google Scholar 

  17. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence, vol. 1, pp. 700–720. Kaufmann, San Francisco (2001)

    Chapter  Google Scholar 

  18. Luo, S., Cheng, L., Ren, B.: Practical swarm optimization based fault-tolerance algorithm for the Internet of Things. KSII Trans. Internet Inf. Syst. (TIIS) 8(4), 1178–1191 (2014)

    Article  Google Scholar 

  19. Fang, C., Liu, X., Pardalos, P.M., Pei, J.: Optimization for a three-stage production system in the Internet of Things: procurement, production and product recovery, and acquisition. Int. J. Adv. Manuf. Technol. 83(5–8), 689–710 (2016)

    Article  Google Scholar 

  20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, vol. 200 (2005)

    Google Scholar 

  21. Huo, L., Wang, Z.: Service composition instantiation based on cross-modified artificial bee colony algorithm. China Commun. 13(10), 233–244 (2016)

    Article  Google Scholar 

  22. Xu, X., Liu, Z., Wang, Z., Sheng, Q.Z., Yu, J., Wang, X.: S-ABC: a paradigm of service domain-oriented artificial bee colony algorithms for service selection and composition. Future Gener. Comput. Syst. 68, 304–319 (2017)

    Article  Google Scholar 

  23. Selva Rani, B., Aswani Kumar, C.: A comprehensive review on bacteria foraging optimization technique. In: Dehuri, S., Jagadev, A.K., Panda, M. (eds.) Multi-objective Swarm Intelligence. SCI, vol. 592, pp. 1–25. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46309-3_1

    Chapter  Google Scholar 

  24. Fadel, E., et al.: Spectrum-aware bio-inspired routing in cognitive radio sensor networks for smart grid applications. Comput. Commun. 101, 106–120 (2017)

    Article  Google Scholar 

  25. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development. In: International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 907–912 (2012)

    Google Scholar 

  26. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Integration of agent-based and cloud computing for the smart objects-oriented IoT. In: International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 493–498 (2014)

    Google Scholar 

  27. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Middlewares for smart objects and smart environments: overview and comparison. In: Fortino, G., Trunfio, P. (eds.) Internet of Things Based on Smart Objects. IT, pp. 1–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00491-4_1

    Chapter  Google Scholar 

  28. Chamoso, P., De la Prieta, F., De Paz, F., Corchado, J.M.: Swarm agent-based architecture suitable for Internet of Things and smartcities. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 373, pp. 21–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19638-1_3

    Chapter  Google Scholar 

  29. Cicirelli, F., Fortino, G., Guerrieri, A., Spezzano, G., Vinci, A.: An edge-based platform for dynamic smart city applications. Future Gener. Comput. Syst. (FGCS) 76, 106–118 (2017)

    Article  Google Scholar 

  30. Godfrey, W.W., Jha, S.S., Nair, S.B.: On a mobile agent framework for an Internet of Things. In: International Conference on Communication Systems and Network Technologies (CSNT), pp. 345–350 (2013)

    Google Scholar 

  31. Godfrey, W.W., Nair, S.B.: A bio-inspired technique for servicing networked robots. Int. J. Rapid Manuf. 2(4), 258–279 (2011)

    Article  Google Scholar 

  32. Giordano, A., Spezzano, G., Vinci, A.: Smart agents and fog computing for smart city applications. In: Alba, E., Chicano, F., Luque, G. (eds.) Smart-CT 2016. LNCS, vol. 9704, pp. 137–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39595-1_14

    Chapter  Google Scholar 

  33. Zhang, Y., Qian, C., Lv, J., Liu, Y.: Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans. Industr. Inf. 13(2), 737–747 (2017)

    Article  Google Scholar 

  34. do Nascimento, N.M., de Lucena, C.J.P.: An agent-based framework for self-adaptive and self-organizing applications based on the Internet of Things. Inf. Sci. 378, 161–176 (2017)

    Google Scholar 

  35. López-Matencio, P., Vales-Alonso, J., Costa-Montenegro, E.: ANT: Agent stigmergy-based IoT-Network for enhanced Tourist mobility. Mob. Inf. Syst. 2017, 1–15 (2017). Article ID 1328127. Hindawi

    Google Scholar 

  36. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: MCC Workshop on Mobile Cloud Computing, 1st edn., pp. 13–16 (2012)

    Google Scholar 

  37. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  38. Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)

    Article  Google Scholar 

  39. Bello, O., Zeadally, S.: Intelligent device-to-device communication in the Internet of Things. IEEE Syst. J. 10(3), 1172–1182 (2016)

    Article  Google Scholar 

  40. Gaikwad, P.P., Gabhane, J.P., Golait, S.S.: A survey based on smart homes system using Internet-of-Things. In: International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 330–335 (2015)

    Google Scholar 

  41. Qin, Y., Sheng, Q.Z., Falkner, N.J., Dustdar, S., Wang, H., Vasilakos, A.V.: When things matter: a survey on data-centric Internet of Things. J. Netw. Comput. Appl. 64, 137–153 (2016)

    Article  Google Scholar 

  42. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Martinoli, A., et al. (eds.) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol. 83, pp. 417–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_30

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouarda Zedadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zedadra, O., Savaglio, C., Jouandeau, N., Guerrieri, A., Seridi, H., Fortino, G. (2018). Towards a Reference Architecture for Swarm Intelligence-Based Internet of Things. In: Fortino, G., Ali, A., Pathan, M., Guerrieri, A., Di Fatta, G. (eds) Internet and Distributed Computing Systems. IDCS 2017. Lecture Notes in Computer Science(), vol 10794. Springer, Cham. https://doi.org/10.1007/978-3-319-97795-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97795-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97794-2

  • Online ISBN: 978-3-319-97795-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics