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Theory is when we know everything but
nothing works. Praxis is when everything
works but we do not know why. We always
end up by combining theory with praxis:
nothing works and we do not know why.

Albert Einstein



Preface

Development of communication, radar, radio navigation, and radio telemetry
systems as well as new approaches in biology, medicine, ecology, and other fields
raises new problems for radiophysics. One of the main problems includes excita-
tions of electromagnetic fields in various spatial regions and improvement of
mathematical modeling, allowing reduction of temporal and material costs of
developing new elements, devices, and systems. Especially, this applies to devices
and systems located on mobile objects with complex shape made of new materials,
since their experimental development is extremely laborious, time-consuming, and
expensive process.

A mathematical modeling of electromagnetic fields in an arbitrary electrody-
namic volume is based on problem solution related to a wave excitation in this
volume. Therefore, solutions of these problems for any electrodynamic volume are
of scientific interest, since they help to construct physically correct mathematical
models. Analytic solutions, which can be obtained for volumes with coordinate
boundaries by either the eigenfunction or the Green’s function method, are known
to be the most universal. Since Green’s functions can be interpreted as fields excited
by a point source at an observation point, they are very effective for solutions of
excitation problems and are widely used in mathematical modeling. These methods
allow us to derive compact expressions in closed form for wave fields excited by
extraneous or induced currents. It is also important that the Green’s functions can be
used to investigate some general properties of fields in source regions for any
sources. The Green’s functions can also be applied to derive integral equations for
problems related to scattering of electromagnetic waves by inhomogeneities located
in the electrodynamic volumes.

The Green’s functions for vector potentials and electromagnetic fields are usu-
ally used, and their usage has one significant difference. The Green’s functions for
vector potentials are characterized by integrable singularities in the source region,
while the Green’s functions for fields are non-integrable. In the latter case, the
theory of generalized functions should be involved for regularization of the Green’s
functions, which considerably complicates the problem solution. Therefore, the
Green’s tensors for vector potentials are more applicable for numerical simulations.
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The tensor Green’s functions of Helmholtz equations for vector Hertz potentials
both for closed and open domains, whose boundaries are combinations of coordi-
nate surfaces in generalized cylindrical coordinates, were earlier described in the
literature. Generally, it was usually assumed that the internal filling of the regions
was homogeneous and isotropic, and the boundary surfaces were perfectly con-
ductive. Explicit expressions of the Green’s functions for regions with spherical
boundaries and spherical regions with inhomogeneous layered dielectric filling,
whose boundary surfaces are completely or partially characterized by a distributed
impedance, were obtained by the authors of this work.

Due to the huge number of publications devoted to theoretical and experimental
studies of electromagnetic fields in spherical volumes, we cannot present here a full
overview. The main publication will be analyzed in the following chapters, which
contain references with detailed bibliographies. The large number of publications
testifies to the great interest of microwave device developers to such studies.
Solution of boundary value problems for spherical spatial domains can be applied to
the development of various devices. They include shielded and open dielectric
resonators used as oscillatory systems of microwave generators and quantum dis-
criminators, integrated circuits of microwave and EHF wavebands, isolated antenna
elements in various material media of spherical forms such as homogeneous
dielectric spheres or hollow spherical dielectric shells of finite thickness, etc.

Particular attention should be paid to a concept associated with application of
spherical surface antennas, which, in general, are systems that combine radiators
with the object’s body. As known, the object body strongly effects on electrody-
namic parameters of low-directional antennas installed near or on the object surface.
This influence is determined, first of all, by the object shape and dimensions.
External characteristics of such antennas can be evaluated by solving the problems
of electromagnetic wave diffraction at complex scatterers, represented by real
objects. The solution of these problems in such formulation can meet significant
mathematical difficulties, since the object dimensions are often comparable with an
operating wavelength, and, consequently, the known asymptotic methods are not
applicable for the problem solutions. To overcome these difficulties, the object body
or its part, on which the antenna is located, can be replaced by approximating body
of regular geometric shape for which rigorous problem solutions are possible.
A sphere and a hemispherical projection over an infinite plane, along with others,
are often used as such geometric shapes. In a number of cases, finite conductivities
of object materials should be taken into account. Electromagnetic fields in arbitrary
points of spatial regions and radiation characteristics of the exciting element cannot
be studied without effective mathematical models without restrictions on their
parameters.

The authors will consider construction of Green’s functions for the Hertz
potentials in electrodynamic volumes with spherical boundaries, including those
with inhomogeneous radial filling. The possible application of the obtained results
will be analyzed in the most clear and compact form.
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Chapter 1 is of overview character, where basic equations of electrodynamics
and boundary conditions for electromagnetic fields are discussed. This allows us to
set out the problems in a compact form. The uniqueness theorem and the reciprocity
principle for volumes with impedance boundaries are also considered. Excitation
problems for regions whose boundaries coincide with coordinate lines in orthogonal
curvilinear coordinate systems are solved using the tensor Green’s functions of the
vector Helmholtz equation for Hertz potentials. General properties of the Green’s
functions for vector potentials and Green’s functions for electromagnetic fields and
relationships between them are specified. The components of the tensor Green’s
functions for vector potentials are a built by the method proposed in Methods Of
Theoretical Physics by Philip M. Morse and Herman Feshbach. The components
of the Green’s functions are presented as series expansions in three types of Hansen
vector wave functions: one longitudinal and two transverse. The representations for
the Green’s functions for spherical coordinates are universal since they depend on
the radial coordinates in an implicit form. The explicit dependences are defined as
solution the inhomogeneous differential equations with the boundary conditions for
these functions based on the boundary value problem geometry specified in a radial
direction. The expressions of the integral equations in the system of spherical
coordinates in terms of the constructed Green’s functions are also analyzed.

Excitation problems of electromagnetic fields in resonators with spherical
boundaries are considered in Chap. 2. First, the boundary conditions for the electric
and magnetic functions depending on the radial coordinate are define more exactly
for three configurations, namely, (1) for spherical perfectly conducting surfaces and
arbitrary orientation of sources; (2) for spherical impedance surfaces and sources
radially oriented or located on the surfaces; and (3) for the spherical boundary
between concentric dielectric layers and radially oriented sources.

Then, self-consistent boundary conditions on the impedance spherical surface
are formulated. These conditions are based on the physical effect stating that
electromagnetic waves excited in the resonator by radial external currents and
reflected from the boundaries conserve their structure, i.e., a mutual transformation
of electric and magnetic waves is absent. The field structures are also conserved if
the concentric dielectric layers are excited by the radial currents. Relations between
magnetic and electric currents on impedance surfaces are determined using
Schukin–Leontovich impedance boundary conditions for electromagnetic fields.

The functions of radial coordinates are determined as solution of inhomogeneous
Bessel differential equation obtained by the method of variation of arbitrary con-
stants in regions with sources and as solution of homogeneous Bessel equations for
layered structures. Field boundedness in the resonator center and radiation condi-
tions at infinity are used, where necessary. Thus, the components of the electric and
magnetic Green’s tensors are defined for various configurations of spherical regions
and excitation sources.

Application of the impedance approach for solving the problem concerning
internal excitation of a dielectric sphere with a lower dielectric permeability as
compared with that of external medium is studied, and analytic expressions for
equivalent surface impedances are obtained. A procedure for modifying the
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obtained magnetic Green’s functions allowing finding the electromagnetic fields
excited by radial magnetic currents in semispherical resonators located above a
perfectly conducting screen is substantiated. This procedure is based on the
well-known principle of incomplete summation in the expressions for Green’s
functions, in which terms that do not meet the boundary conditions for fields on the
screen surface are excluded.

Chapter 3 is devoted to solving excitation problems of spherical scatterers,
which are placed in an isotropic infinite medium. A brief description of commonly
used methods of mathematical modeling of spherical surface antenna is given. The
functions of the radial coordinates for the electric and magnetic Green’s tensors are
determined for the space outside a perfectly conducting sphere.

In the same way, the electric and magnetic Green’s functions are obtained for a
space outside a spherical scatterer, whose surface is characterized by a distributed
isotropic impedance, radial excitation sources, or extraneous currents specified on
the impedance sphere. The impedance approach to the problem of external exci-
tation of dielectric spheres by radial currents is investigated, and analytic expres-
sions for equivalent surface impedances are obtained. Electrical and magnetic
Green’s functions for a space outside a perfectly conducting or impedance sphere
covered by a concentric dielectric layer, excited by radially oriented sources, are
constructed. A technique allowing extraction terms of the Green’s functions that
determine electromagnetic fields as superposition of primary excitation fields in the
free space and fields scattered by a sphere is presented.

Two modifications of the Green’s functions are made. The first modification
allows defining fields excited by radial electric and magnetic currents in a
half-space over a perfectly conducting flat screen with a hemispherical projection
with a perfectly conducting or impedance surface covered by a concentric dielectric
layer. The second modification can be used for axially symmetric excitation by
annular surface currents on a perfectly conducting or impedance hemispherical
projection above a screen.

The formation of radiation fields by dipoles located on surfaces of spherical
scatterers is analyzed in Chap. 4. It is significant that solutions obtained in known
works concerning the problem are applicable only for calculating radiation patterns
for perfectly conducting spherical surfaces. Expressions for electromagnetic fields
radiated by a radially oriented electric dipole on a perfectly conducting sphere,
impedance sphere, or spherical scatterer coated by concentric dielectric layers are
obtained using the Green’s functions for the Hertz vector potentials. These
expressions can be used to determine the fields both in the near and far wave zones.
Modified expressions for determining radiation fields of radial electric dipoles in the
half-space over a perfectly conducting infinite screen are obtained when the dipole
is placed on a hemispherical projection.

Expressions for the electromagnetic field components radiated by elementary
magnetic vibrators on perfectly conducting or impedance spherical surfaces are
obtained. Directional characteristics of electromagnetic fields radiated by electric
and magnetic dipoles located on a perfectly conducting sphere in the wave zone are
investigated for various diffraction radii of the spherical scatterer.
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A synthesis of current distribution on arrays of radial electric dipoles arbitrarily
placed on a perfectly conducting sphere is solved by using an RMS approximation
of complex radiation patterns of spherical surface antennas. A technique for an
array synthesis problem which allows to obtain a maximum directivity for the
spherical antenna arrays is generalized. A formula for direct determination of the
complex current amplitudes in radiators without a numerical solution of linear
algebraic equations is obtained using a discrete Fourier transform for circular
equidistant arrays of the radial electric dipoles.

Chapter 5 is aimed at obtaining analytical asymptotics for the electric current in
the impedance radial vibrator located on the perfectly conducting sphere excited by
a point delta voltage generator placed at a finite distance above the spherical
scatterer. The solution of original integral equations is constructed by successive
iterations using the natural small parameter of the problem based on the well-known
Green’s function for the space outside the sphere filled with a homogeneous and
isotropic medium. The improved zero approximation is obtained in an analytical
form valid for both tuned and untuned vibrators and for arbitrary sphere radii. The
analytic expression for the monopole at the sphere of the infinitely large diffraction
radius excited at its base coincides with the three-term formula for impedance
vibrator currents obtained by R. King and T. Wu.

If vibrator currents and the Green’s functions for the vector potential are known,
the solutions allowing numerical studies of wave-zone fields radiated by the
spherical antenna can be obtained. If the dipole radiator is located directly on the
sphere, the expression for the spherical antenna radiation pattern coincides, up to
the notation, with the well-known formula obtained earlier by L. A. Weinstein. If
the radial monopole is excited at the base, its input impedance at the supply point
can be defined as ratio of the voltage to current at this point. As known from
literature, the zero approximation for the current does not always ensure required
accuracy of the input resistance calculation for vibrator radiators. On the other hand,
derivation of analytical formulas for subsequent approximations is difficult to
realize. Therefore, the input vibrator resistance was found by the generalized
method of induced electro-motive forces (EMF), where the functional dependence
for the zero current approximation was used as the basis function. In final
expressions for the input resistance of the spherical antenna, the vibrator radiation
resistance is determined by complete inversion of differential operators.

In Chap. 6, a circular slot cut in an equatorial plane of a sphere with axially
symmetric excitation is considered. Analytical expressions for radiation fields of the
slotted spherical antenna with perfectly conducting or impedance spheres are
obtained using the Green’s functions. These expressions can be used to determine
electromagnetic fields of the slotted spherical antennas at any distance between the
sphere center and observation point.

The problem of electromagnetic wave radiation into space outside the perfectly
conducting sphere through the narrow slot of finite length is also solved by the
generalized method of induced magneto-motive forces (MMF). The slot is cut in the
impedance end wall of the semi-infinite rectangular waveguide or in-line resonator.
The concept of equivalent slot width, which allows the problem solution without
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defining fields in the internal slot cavity, is applied. A single basis function for the
slot magnetic current was obtained as analytical solution of the integral equation
current by the asymptotic averaging method. The problem is solved by using the
corresponding Green’s functions in the two different local coordinate systems
related to the coupling electrodynamic volumes. The validity of the solution is
confirmed by agreement of the simulation results and experimental data.

In Chap. 7, fields radiated by the combined structure, known as the Clavin
vibrator-slot radiator, located on the perfectly conducting sphere, are investigated.
The mathematical model of the structure with radially oriented impedance mono-
poles is constructed using the tensor Green’s functions for the space outside the
perfectly conducting sphere. The model is based on the solution of the external
electrodynamic problem in the rigorous formulation by the generalized method of
induced electro-magneto-motive forces (EMMF). Directivity characteristics of the
spherical antenna were studied for various vibrator lengths and distances between
the vibrators. It is shown that directivities and energy characteristics of the spherical
antennas can be varied within wide limits by changing the electric length of the
vibrators, the distances between them, and/or the surface reactive impedances of the
vibrators. It is shown that optimal characteristics of the Clavin-type radiators with
inductive impedance vibrators can be realized with shorter vibrator lengths as
compared with perfectly conducting vibrators.

The radiation fields of multielement antenna arrays consisting of radial and arc
monopoles located on spherical scatterers are also investigated in this chapter.
A simulation of antenna radiation fields in far zone is carried out using expressions
obtained for monopoles arbitrary distributed on a spherical surface. Spherical
antennas with two-vibrator and four-vibrator arrays intended for use in mobile
communication systems are considered. Zonal coverage by the antenna radiation
field of the entire surrounding space using different powering modes for two pairs
of oppositely located resonant monopoles on a sphere with a quarter-wavelength
radius can be achieved.

Appendix A contains expressions for differential operators and Helmholtz
equations in orthogonal curvilinear coordinate systems including specific cases of
rectangular, cylindrical, and spherical coordinate systems. In Appendix B, a
step-by-step procedure for constructing the Green’s tensors in spherical coordinate
systems is presented. Appendix C provides formulas for determining the surface
impedance for various models of practical implementation of thin impedance
vibrators. Appendix D is of a reference nature and contains the explicit formulas for
the components of the Green’s functions in the electrodynamic volumes which will
be used in the book. In Appendix E, a relation between the Hertz vectors and
pseudovectors in the spherical coordinate system is analytically justified.

This monograph is intended for graduate students, post-graduate students,
engineers, and researchers. It is assumed that the reader knows the vector and tensor
analysis, and the general theory of electrodynamics. The results presented in the
book can be directly used for the development of various spherical antennas.
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