Skip to main content

A Spiking Model of Desert Ant Navigation Along a Habitual Route

  • Conference paper
  • First Online:
Recent Advances in Soft Computing (MENDEL 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 837))

Included in the following conference series:

  • 337 Accesses

Abstract

A model producing behavior mimicking that of a homing desert ant while approaching the nest along a habitual route is presented. The model combines two strategies that interact with each other: local vector navigation and landmark guidance with an average landmark vector. As a multi-segment route with several waypoints is traversed, local vector navigation is mainly used when leaving a waypoint, landmark guidance is mostly used when approaching a waypoint, and a weighted interplay of the two is used in between waypoints. The model comprises a spiking neural network that is developed based on the principles of the Neural Engineering Framework. Its performance is demonstrated with a simulated robot in a virtual environment, which is shown to successfully navigate to the final waypoint in different scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., Webb, B.: Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput. Biol. 12, e1004683 (2016). https://doi.org/10.1371/journal.pcbi.1004683

    Article  Google Scholar 

  2. Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8, e1002336 (2012). https://doi.org/10.1371/journal.pcbi.1002336

    Article  Google Scholar 

  3. Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.C., Rasmussen, D., Choo, X., Voelker, A.R., Eliasmith, C.: Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinform. 7, 48 (2014). https://doi.org/10.3389/fninf.2013.00048

    Article  Google Scholar 

  4. Bregy, P., Sommer, S., Wehner, R.: Nest-mark orientation versus vector navigation in desert ants. J. Exp. Biol. 211, 1868–1873 (2008). https://doi.org/10.1242/jeb.018036

    Article  Google Scholar 

  5. Collett, M.: How desert ants use a visual landmark for guidance along a habitual route. In: Proceedings of the National Academy of Sciences U.S.A., vol. 107, pp. 11638–11643 (2010). https://doi.org/10.1073/pnas.1001401107

  6. Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998)

    Article  Google Scholar 

  7. Cruse, H., Wehner, R.: No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput. Biol. 7, e1002009 (2011). https://doi.org/10.1371/journal.pcbi.1002009

    Article  Google Scholar 

  8. Eliasmith, C., Anderson, C.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2003)

    Google Scholar 

  9. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Rob. Auton. Syst. 30, 39–64 (2000). https://doi.org/10.1016/S0921-8890(99)00064-0

    Article  Google Scholar 

  10. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1321–1326, Tokyo (2013). https://doi.org/10.1109/IROS.2013.6696520

  11. Smith, L., Philippides, A., Graham, P., Baddeley, B., Husbands, P.: Linked local navigation for visual route guidance. Adapt. Behav. 15, 257–271 (2007). https://doi.org/10.1177/1059712307082091

    Article  Google Scholar 

  12. Stewart, T.C., Choo, X., Eliasmith, C.: Dynamic behaviour of a spiking model of action selection in the basal ganglia. In: Salvucci, D.D., Gunzelmann, G. (eds.) Proceedings of the 10th International Conference on Cognitive Modeling, pp. 235–240, Philadelphia (2010)

    Google Scholar 

  13. Strausfeld, N.J., Hirth, F.: Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161 (2013). https://doi.org/10.1126/science.1231828

    Article  Google Scholar 

  14. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A. 189, 579–588 (2003). https://doi.org/10.1007/s00359-003-0431-1

    Article  Google Scholar 

  15. Wehner, R.: The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol. News 12, 85–96 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nowak, P., Stewart, T.C. (2019). A Spiking Model of Desert Ant Navigation Along a Habitual Route. In: Matoušek, R. (eds) Recent Advances in Soft Computing . MENDEL 2017. Advances in Intelligent Systems and Computing, vol 837. Springer, Cham. https://doi.org/10.1007/978-3-319-97888-8_18

Download citation

Publish with us

Policies and ethics