Skip to main content

How to Prove KDM Security of BHHO

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11049))

Included in the following conference series:

  • 549 Accesses

Abstract

Boneh et al. showed a KDM secure public-key encryption scheme under the DDH assumption. The KDM security means that even when any affine function of the secret keys is encrypted, it is guaranteed to be secure. In this paper, we show a more tight proof. The reduction loss to the DDH assumption is \(2\slash 3\) times smaller in the KDM\(^{(1)}\)-security, and \(5\slash 6\) times smaller in the KDM\(^{(n)}\)-security, where n is the number of users. Our proof is also conceptually simpler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is tightly reduced to the DDH assumption if \(\ell =2\) or \(Q=2\). Otherwise, however, it is not.

References

  1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  2. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability - (or: quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_1

    Chapter  Google Scholar 

  3. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_13

    Chapter  Google Scholar 

  4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_7

    Chapter  Google Scholar 

  5. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_36

    Chapter  Google Scholar 

  6. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_28

    Chapter  Google Scholar 

  7. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  8. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Tada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tada, H., Ueda, A., Kurosawa, K. (2018). How to Prove KDM Security of BHHO. In: Inomata, A., Yasuda, K. (eds) Advances in Information and Computer Security. IWSEC 2018. Lecture Notes in Computer Science(), vol 11049. Springer, Cham. https://doi.org/10.1007/978-3-319-97916-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97916-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97915-1

  • Online ISBN: 978-3-319-97916-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics