Abstract
We consider all LWE- and NTRU-based encryption, key encapsulation, and digital signature schemes proposed for standardisation as part of the Post-Quantum Cryptography process run by the US National Institute of Standards and Technology (NIST). In particular, we investigate the impact that different estimates for the asymptotic runtime of (block-wise) lattice reduction have on the predicted security of these schemes. Relying on the “LWE estimator” of Albrecht et al., we estimate the cost of running primal and dual lattice attacks against every LWE-based scheme, using every cost model proposed as part of a submission. Furthermore, we estimate the security of the proposed NTRU-based schemes against the primal attack under all cost models for lattice reduction.
T. Wunderer—The research of Albrecht was supported by EPSRC grant “Bit Security of Learning with Errors for Post-Quantum Cryptography and Fully Homomorphic Encryption” (EP/P009417/1) and by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). The research of Curtis, Deo and Davidson was supported by the EPSRC and the UK government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1). The research of Player was partially supported by the French Programme d’Investissement d’Avenir under national project RISQ P141580. The research of Postlethwaite and Virdia was supported by the EPSRC and the UK government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1). The research of Wunderer was supported by the DFG as part of project P1 within the CRC 1119 CROSSING.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
BKW-style algorithms do outperform BKZ in the enumeration regime for some medium-sized parameter sets. However, similarly to BKZ in the sieving regime, BKW requires \(2^{\varTheta (n)}\) memory.
- 2.
https://bitbucket.org/malb/lwe-estimator, commit 1850100.
- 3.
Any discrepancies in value from those cited in [15] are due to rounding introduced to the estimator output since.
References
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, New York, May 1996
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: 33rd ACM STOC, pp. 601–610. ACM Press, New York, July 2001
Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_4
Albrecht, M.R., Cid, C., Faugère, J., Perret, L.: Algebraic algorithms for LWE. Cryptology ePrint Archive, Report 2014/1018 (2014). http://eprint.iacr.org/2014/1018
Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 429–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_25
Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 2016, pp. 327–343. USENIX Association (2016)
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34
Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_21
Bansarkhani, R.E.: Kindi. Technical report, NIST (2017)
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA, pp. 10–24. ACM-SIAM, New York (2016)
Bernstein, D.J.: Table of ciphertext and key sizes for the NIST candidate algorithms (2017). https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/1lDNio0sKq4/xjqy4K6SAgAJ
Bernstein, D.J.: Comment on PQC forum (2018). https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/h4_LCVNejCI/FyV5hgnqBAAJ
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: Ntru prime. Technical report, NIST (2017)
Bindel, N., et al.: qTESLA. Technical report, NIST (2017)
Bos, J.W., et al.: Frodo: Take off the ring! practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 1006–1018. ACM Press, New York, October 2016
Chen, Y.: Réduction de réseau et sécurité concréte du chiffrement complétement homomorphe. Ph.D. thesis, Paris 7 (2013)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-key cryptosystem based on \(\sf spLWE\). In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53177-9_3
Cheon, J.H., et al.: Lizard. Technical report, NIST (2017)
Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_5
D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber. Technical report, NIST (2017)
The FPLLL Development Team: fplll, a lattice reduction library (2017). https://github.com/fplll/fplll
Ding, J., Takagi, T., Gao, X., Wang, Y.: Ding key exchange. Technical report, NIST (2017)
Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–463 (1985)
Fujita, R.: Table of underlying problems of the NIST candidate algorithms (2017). https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/1lDNio0sKq4/7zXvtfdZBQAJ
Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press, New York, May 2008
Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tolhuizen, L., Torre-Arce, J.: Round2. Technical report, NIST (2017)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th ACM STOC, pp. 212–219. ACM Press, New York, May 1996
Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with sieving. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 323–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_12. Lecture Notes in Computer Science
Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_2. Lecture Notes in Computer Science
Hamburg, M.: Three bears. Technical report, NIST (2017)
Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for NTRUEncrypt. Cryptology ePrint Archive, Report 2015/708 (2015). http://eprint.iacr.org/2015/708
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public-key cryptosystem. Technical report, Draft distributed at CRYPTO96 (1996). https://cdn2.hubspot.net/hubfs/49125/downloads/ntru-orig.pdf
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9
Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: 15th ACM STOC, pp. 193–206. ACM Press, New York, April 1983
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 415–440 (1987)
Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_3
Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_1
Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice sieving. Ph.D. thesis, Eindhoven University of Technology (2015)
Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_1
Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Crypt. 77(2–3), 375–400 (2015)
Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2015)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: Lac. Technical report, NIST (2017)
Lyubashevsky, V., et al.: Crystals-dilithium. Technical report, NIST (2017)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
May, A., Silverman, J.H.: Dimension reduction methods for convolution modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_10
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5
Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead. In: Indyk, P. (ed.) 26th SODA, pp. 276–294. ACM-SIAM, New York, January 2015
Moody, D.: The NIST post quantum cryptography “competition” (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf
Naehrig, M., et al.: Frodokem. Technical report, NIST (2017)
Nguyen, P.: Comment on PQC forum (2018). https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/nZBIBvYmmUI
NIST: Submission requirements and evaluation criteria for the Post-Quantum Cryptography standardization process, December 2016. http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
NIST: Performance testing of the NIST candidate algorithms (2017). https://drive.google.com/file/d/1g-l0bPa-tReBD0Frgnz9aZXpO06PunUa/view
Phong, L.T., Hayashi, T., Aono, Y., Moriai, S.: Lotus. Technical report, NIST (2017)
Poppelmann, T., et al.: Newhope. Technical report, NIST (2017)
Prest, T., et al.: Falcon. Technical report, NIST (2017)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, New York, May 2005
Saarinen, M.O.: Hila5. Technical report, NIST (2017)
Schanck, J.: Practical lattice cryptosystems: NTRUEncrypt and NTRUMLS. Master’s thesis, University of Waterloo (2015)
Schanck, J.M., Hulsing, A., Rijneveld, J., Schwabe, P.: Ntru-hrss-kem. Technical report, NIST (2017)
Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14
Schwabe, P., et al.: Crystals-kyber. Technical report, NIST (2017)
Seo, M., Park, J.H., Lee, D.H., Kim, S., Lee, S.: Emblem and r.emblem. Technical report, NIST (2017)
Smart, N.P., et al.: Lima. Technical report, NIST (2017)
Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36
Steinfeld, R., Sakzad, A., Zhao, R.K.: Titanium. Technical report, NIST (2017)
Wunderer, T.: Revisiting the hybrid attack: improved analysis and refined security estimates. Cryptology ePrint Archive, Report 2016/733 (2016). http://eprint.iacr.org/2016/733
Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt. Technical report, NIST (2017)
Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: pqNTRUSign. Technical report, NIST (2017)
Zhao, Y., Jin, Z., Gong, B., Sui, G.: KCL (pka OKCN/AKCN/CNKE). Technical report, NIST (2017)
Acknowledgements
We thank Jean-Philippe Aumasson, Paulo Barreto, Dan Bernstein, Leo Ducas, Mike Hamburg, Duhyeong Kim, Thijs Laarhoven, Vadim Lyubashevsky, Phong Nguyen and the anonymous reviewers for pointing out mistakes in earlier versions of this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Albrecht, M.R. et al. (2018). Estimate All the {LWE, NTRU} Schemes!. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-98113-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98112-3
Online ISBN: 978-3-319-98113-0
eBook Packages: Computer ScienceComputer Science (R0)