Skip to main content

Tight Adaptively Secure Broadcast Encryption with Short Ciphertexts and Keys

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11035))

Included in the following conference series:

Abstract

We present a new public key broadcast encryption scheme where both the ciphertext and secret keys consist of a constant number of group elements. Our result improves upon the work of Boneh, Gentry and Waters (Crypto ’05) as well as several recent follow-ups (TCC ’16-A, Asiacrypt ’16) in two ways: (i) we achieve adaptive security instead of selective security, and (ii) our construction relies on the decisional k-Linear Assumption in prime-order groups (as opposed to q-type assumptions or subgroup decisional assumptions in composite-order groups); our improvements come at the cost of a larger public key. Finally, we show that our scheme achieves adaptive security in the multi-ciphertext setting with a security loss that is independent of the number of challenge ciphertexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_10

    Chapter  MATH  Google Scholar 

  2. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31

    Chapter  Google Scholar 

  3. Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR Cryptology ePrint Archive, 2015:390 (2015)

    Google Scholar 

  4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

    Chapter  Google Scholar 

  5. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18

    Chapter  MATH  Google Scholar 

  6. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  8. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23

    Chapter  Google Scholar 

  9. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Juels, A., Wright, R.N., di Vimercati, S.C. (eds.) ACM CCS 06, Alexandria, Virginia, USA, 30 October–3 November 2006, pp. 211–220. ACM Press (2006)

    Google Scholar 

  10. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_12

    Chapter  Google Scholar 

  11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

    Chapter  Google Scholar 

  12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  13. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1

    Chapter  Google Scholar 

  14. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-Type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_34

    Chapter  Google Scholar 

  15. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_22

    Chapter  Google Scholar 

  16. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader reductions of q-type assumptions. Cryptology ePrint Archive, Report 2016/840, (2016). http://eprint.iacr.org/

  17. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_14

    Chapter  Google Scholar 

  18. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  19. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_16

    Chapter  Google Scholar 

  20. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44993-5_5

    Chapter  Google Scholar 

  21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  22. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  23. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_3

    Chapter  Google Scholar 

  24. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-resilient traitor tracing and revocation schemes. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, Chicago, Illinois, USA, 4–8 October 2010, pp. 121–130. ACM Press (2010)

    Google Scholar 

  25. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_24

    Chapter  Google Scholar 

  26. Gay, R., Kowalczyk, L., Wee, H.: Tight adaptively secure broadcast encryption with short ciphertexts and keys. Cryptology ePrint Archive, Report 2018/391 (2018). http://eprint.iacr.org/2018/391

  27. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-based revocation in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_31

    Chapter  Google Scholar 

  28. Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_21

    Chapter  Google Scholar 

  29. Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability and broadcast encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 372–387. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_24

    Chapter  Google Scholar 

  30. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_22

    Chapter  Google Scholar 

  31. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_10

    Chapter  MATH  Google Scholar 

  32. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35

    Chapter  Google Scholar 

  33. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_4

    Chapter  Google Scholar 

  34. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_20

    Chapter  MATH  Google Scholar 

  35. Lee, K., Lee, D.H.: Adaptively secure broadcast encryption under standard assumptions with better efficiency. IET Inf. Secur. 9, 149–157 (2015)

    Article  Google Scholar 

  36. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  37. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3

    Chapter  Google Scholar 

  38. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_4

    Chapter  Google Scholar 

  39. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13

    Chapter  Google Scholar 

  40. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. Cryptology ePrint Archive, Report 2000/004 (2000). http://eprint.iacr.org/2000/004

  41. Stinson, D.R., van Trung, T.: Some new results on key distribution patterns and broadcast encryption. Des. Codes Cryptograph. 14(3), 261–279 (1998)

    Article  MathSciNet  Google Scholar 

  42. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  43. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

  44. Wee, H.: Déjà Q: encore! Un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_9

    Chapter  Google Scholar 

Download references

Acknowledgements

Romain Gay is partially supported by a Google Fellowship. Lucas Kowalczyk’s work has been done while visiting ENS, Paris. He is supported in part by the Defense Advanced Research Project Agency (DARPA) and Army Research Office (ARO) under Contract W911NF-15-C-0236; NSF grants CNS-1445424, CNS-1552932, and CCF-1423306; and an NSF Graduate Research Fellowship DGE-16-44869. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency, Army Research Office, the National Science Foundation, or the U.S. Government. Hoeteck Wee is supported in part by ERC Project aSCEND (H2020 639554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Kowalczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gay, R., Kowalczyk, L., Wee, H. (2018). Tight Adaptively Secure Broadcast Encryption with Short Ciphertexts and Keys. In: Catalano, D., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2018. Lecture Notes in Computer Science(), vol 11035. Springer, Cham. https://doi.org/10.1007/978-3-319-98113-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98113-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98112-3

  • Online ISBN: 978-3-319-98113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics