Propagating regular membership with dashed
strings

Roberto Amadini', Graeme Gange?, and Peter J. Stuckey!

! University of Melbourne, Victoria, Australia
2 Monash University, Melbourne, Victoria, Australia

Abstract. Using dashed strings is an approach recently introduced in
Constraint Programming (CP) to represent the domain of string vari-
ables, when solving combinatorial problems with string constraints. One
of the most important string constraints is that of regular membership:
REGULAR(z, R) imposes string = to be a member of the regular language
defined by automaton R. The REGULAR constraint is useful for specifying
complex constraints on fixed length finite sequences, and regularly ap-
pears in CP models. Dealing with REGULAR is also desirable in software
testing and verification, because regular expressions are often used in
modern programming languages for pattern matching. In this paper, we
define a REGULAR propagator for dashed string solvers. We show that this
propagator, implemented in the G-STRINGS solver, is substantially better
than the current state-of-the-art. We also demonstrate that many REGU-
LAR constraints appearing in string solving benchmarks can actually be
tackled by dashed strings solvers without explicitly using REGULAR.

1 Introduction

String constraint solving is an emerging topic that bases its motivation in fields
like web security and software analysis and verification. Suitable solvers have
been introduced over the last years for solving combinatorial problems involving
string variables and constraints [1,9,12,14,18-21].

Recent works [6] introduced the dashed-string representation for string vari-
ables in constraint programming (CP), and described propagation algorithms for
equality and related constraints [5], lexicographic ordering and find /replace [4]. A
key advantage of this representation is the ability to efficiently represent strings
of uncertain — but possibly very large — length by dividing similarly behaved
regions of a partially specified string into a sequence of concatenated blocks.

A common element of string constraint problems which has not yet been con-
sidered by dashed string solvers is the regular language membership constraint
REGULAR(z, R), whose semantics is « € L(R) where x is a string variable and
L(R) is the regular language denoted by the finite state automaton R.

Constraint programming treatments of REGULAR typically act on a fized-
length sequence of integer variables, and require that running the automaton on
this sequence finishes in an accepting state. Sequences of non-fixed (but bounded)
length are typically padded with a special character to a maximum length in

order to use the fixed-length REGULAR propagator. We do not want to adopt this
strategy for dashed-strings, as it would totally defeat the advantage of dashed
strings that operate effectively on strings whose length bound is large. Instead,
we must develop a new propagation algorithm, which operates at the level of
blocks of characters, rather than individual characters.

In this paper we present such an algorithm and integrate it into G-STRINGS, a
constraint programming solver using the dashed-string representation. We eval-
uate its effectiveness on a range of real-world benchmarks containing regular
language constraints, and find that it significantly outperforms existing CP and
SMT approaches. We also identify a frequently-occurring subclass of regular lan-
guages which can be reformulated as basic string constraints, and evaluate the
effect of this substitution.

2 Preliminaries

In this Section we give background notions about dashed strings representation,
G-STRINGS solver, automata and regular expressions.

2.1 Dashed Strings

We assume a finite alphabet of symbols X. A string w € X* is either the empty
string € or of the form cw’ where ¢ € X is a symbol and w’ € X* is a string.
Typewriter font is used to denote constant characters ¢ € X. The length |w|
of string w is the number of symbols appearing in w. We use array notation to
lookup the symbols in a string: wli] is the i*" symbol of string w, with 1 < i < |w|.

Let us fix a maximum string length A € N and a universe S = U;\:o X,
A dashed string of length k is defined by a concatenation of k > 0 blocks
Sl glata gtk where §; € X oand 0 < I; < w; < A for i = 1,...,k
and X*_1; < \. Note that the latter condition does not pose any upper bound
to the dashed string length: we might have both Eleli <Xand k > A\

For each block S“*, we call S the base and (I,u) the cardinality. The i-th
block of a dashed string X is denoted by X[i], and |X| is the length of X. We
do not distinguish blocks from dashed strings of unary length and we consider
only normalised dashed strings, where the adjacent blocks have distinct bases
and the null block (%9 occurs only to denote the empty string. In this way we
provide an unique representation for each concrete string w € X*.

Let v(Sb%) = {x € S* | | < |z| < u} be the language denoted by block S,
We extend 7 to dashed strings: y(S1"" -+ S ") = (4 (SI1) .y (SE") NS
(intersection with S excludes the strings with length greater than \). A dashed
string X is known if it denotes a single string: |y(X)| = 1. Normalisation entails
that each string w € S has a unique known dashed string X such that w = (X).

A block of the form SO is called nullable, i.e. e € v(S%%). There is no upper
bound on the length of a dashed string since an arbitrary number of nullable
blocks may occur.

B, b o o o o m ! ! !
o - e ®---@---——Q -~ =-=-=0

Fig. 1: Graphical representation of X = {B,b}11{o}>*{m}11{1}03.

The size ||S5%|| of a block is the number of concrete strings it denotes, i.e.,
1S54 = |y(S%*)|. The size of dashed string X = Si*1 622 ... Gtk ig an
overestimate of |y(X)], given by || X|| = HikleS?’“i

Given dashed strings X and Y we define the relation X C Y < v(X) C ~(Y).
Intuitively, C denotes the relation “is more precise than” between dashed strings.
Unfortunately, the set of dashed strings does not form a lattice according to C [6].
For example, there is not a “best” dashed string denoting {ab,ba} C X*. This
implies that some workarounds have to be used to preserve the soundness of
propagation. For more details, we refer the reader to [5,6].

Intuitively, we can imagine each block S/ of X = §i1glauz. .. ghour
as a continuous segment of length [; followed by a dashed segment of length
u; — ;. The continuous segment indicates that exactly [; characters of S; must
occur in each concrete string of y(X), and defines the mandatory part S'-li.
The dashed segment indicates that n characters of 5;, with 0 < n < w; —I;, may
occur and defines the optional part S? il Consider, for example, the graphical
representation of dashed string X = {B,b}!1{o}?*{m}"1{1}%3 in Fig. 1. Each
string of v(X) starts with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.

2.2 G-Strings Solver

Dashed string solving is implemented in G-STRINGS, an extension of GECODE
solver [11]. It implements the domain D(x) of every string variable x with a
dashed string, and defines a propagator for each string constraint.

Most of the propagators refine the domains of the string variables based on
the notion of dashed string equation. Equating dashed string X and Y means
determining two dashed strings X’ and Y’ such that: (1) X’ C X, Y’ CY; and
(it) Y(X')N~Y’) = v(X) Ny(Y). Informally, we can see this problem as a
semantic unification where we want to find a refinement of X and Y including
all the strings of v(X) N~ (Y) and removing the most values not belonging to
¥(X)N~(Y) (there may not exist a greatest lower bound for X, Y according to
C). G-STRINGS uses the sweep-based algorithm of [5] to propagate dashed strings
equality. For example, string equality x = y is simply propagated by equating
the domains D(z) and D(y); the propagator for z = x -y is implemented by
equating D(z) and the concatenation of blocks D(z) - D(y).

G-STRINGS implements string (dis-)equality, (half-)reified equality, (iterated)
concatenation, string domain, length, reverse, substring selection, global cardi-
nality, channeling with integers, lexicographic ordering, find and replace. Since
propagation is in general not complete, G-STRINGS also defines strategies for
branching on variables (e.g., the one with smallest domain size or having the do-
main with the minimum number of blocks) and domain values (by heuristically
selecting first a block, and then a character of its base).

2.3 Automata and regular expressions

A finite-state automaton (or simply automaton) is a tuple R = (Q, X, 4, qo, F')
where Y is the alphabet; @ is a finite set of states including the initial state qg
and a set F' of accepting states; and § C Q x X x @ is a set of transitions. A
transition (g, ¢, q') € § from state g to ¢’ is also written as ¢ — ¢/. A computation
of length [for string w is a sequence of [transitions sg — s;1 — -+ — §; where
(si—1,w[i],s;) € § for i = 1,...,1. The string w is accepted by automaton R when
|lw| =1, so = qo and s; € F. The language L(R) of automaton R is the regular
language consisting of all the strings of X* accepted by R. If it does not exist
an automaton R’ = (Q', X", ', q}, F') such that L(R') = L(R) and |Q'| < |Q],
then R is minimal.

An automaton is deterministic (DFA) if ¢ is a (partial) function Q@ x X — Q.
In this case, we can use the notation 0(q,c¢) = ¢’ if (q,¢,¢') € J; otherwise,
0(q,c) = L if undefined. A DFA is trim if for each ¢ € @ there exists a compu-
tation gy — - -+ — ¢ and a computation ¢ — --- — ¢’ € F.

If 0 is a total function, then the DFA is complete. If a DFA (Q, X, 6, qo, F') is
not complete, we can extend @ to @' = QU {q.}, and 6 to &' =5 U{(q,¢,q.) |
q € Q,ce X d(g,c)= 1} in order to have a complete DFA (Q', X', 0’, qo, F).
Given an automata R, the complement automaton R is an automata such that
L(R) = ¥* — L(R). Given a complete DFA R = (Q, X, 6, qo, F'), we can easily
compute R = (Q, X, 6,q0,Q — F) by complementing the final states.

Given a complete automaton R = (Q,X,d,qo, F), a state ¢ € F is said
universally accepting if all computations from ¢ bring to a state ¢’ € F (i.e.,
any computation reaching ¢ will be accepted). Dually, a state ¢ € Q — F is said
universally rejecting if all computations from ¢ bring to a state ¢’ € Q — F (i.e.,
any computation reaching ¢ will be rejected).

Let acc(R) and rej(R) be the set of universally accepting and rejecting states
of R respectively. If R is minimal, then |acc(R)|,|rej(R)| < 1. We can effi-
ciently compute the minimum and the maximum length string accepted by R,
minl(R) = min{|w| | w € L(R)} and mazl(R) = max{|w| | w € L(R)}'. Note
that mazl(R) may be +oo (if loops occur) but for our purposes can be at most
A (the maximum allowed string length).

An alternative yet equivalent way to denote a regular language is by means
of regular expressions. We define inductively the set RE of regular expressions
(over alphabet X), as well as the language L(r) denoted by each r € RE, as:
(i) @ € RE, denoting L(2) = 0; (i) if ¢ € X U {e}, then ¢ € RE denoting
L(c) = {c}; (i) if r,7" € RE, then r -’ € RE denoting L(r - ') = L(r)L(r'),
and r|r’ € RE denoting L(r|r’) = L(r) U L(r'); (iv) if r € RE then r* € RE
denoting L(r*) = L(r)*; (v) nothing else belongs to RE.

Given a regular expression r € RE, we indicate with DFA the function such
that R = DFA(r) is the minimal automaton such that L(r) = L(R). Note that
in our case we actually consider the finite language L(r) NS, having strings with
length smaller or equal to .

'Note that mazl(R) # max{|w| | w € L(R), |w| < A}, which is less easy to compute.
If maxl(R) > A, we set maxl(R) = X: this is a correct but not optimal upper bound.

3 Propagating regular on dashed strings

The REGULAR constraint arises fairly frequently in constraint programming prob-
lems. The usual CP constraint REGULAR(z, R) constraint takes a fixed descrip-
tion of an automata R, a fixed length sequence = of integer variables, and con-
strains ¢ € L(R). This form of REGULAR was introduced in [7] and several prop-
agation algorithms have been developed [10,16,17]. These algorithms unfold the
regular automaton into a layered graph — creating a copy of each automaton state
for each variable — which is incrementally updated during search; propagation
occurs when there is no longer a viable edge for some value k at some level.
For unfolding-based string constraint solvers like [18], these REGULAR prop-
agators may be used directly. Given automaton (Q, X, qo, 9, F'), if € is the null
symbol used to pad strings of length smaller than A, it is enough to introduce a
fresh state g., such that d(g.,c) = g, for each c € X', q € F'U {q.}. But dashed
strings solvers represent a much richer sequence variable x, where crucially we
do not know the length of various components. While we could use the unfolding
approach for dashed strings, this would defeat their main purpose which is to
reason about potentially long strings efficiently by means of a lazy approach.
In this paper we also consider the reified form of the regular constraint,
which is rare in CP but frequent in SMT benchmarks derived, e.g. from security
analysis and model checking. This is not surprising since we want also to express
more complex constraints like « ¢ L(R) or if « € L(R) then A(z) else B(z).
We then implemented the reified constraint b < REGULAR(z, R), where b is a
Boolean variable. While in the general case we restrict R to be a complete DFA,
if b = true, i.e. we just have the positive constraint REGULAR(z, R), the propa-
gation algorithms work for any non-deterministic and non-complete automaton.

3.1 Propagation

Let us propagate b < REGULAR(z, R), where R = (Q, X, qo, 9, F) is a complete
DFA and z is a string variable. We take inspiration from the propagation of the
regular global constraint for integer variables.

Before posting the REGULAR constraint itself, we post some bound constraints
on the length of z by taking advantage of minl and max! functions (see Fig. 2).
These constraints may detect early failures or provide additional information.
For example, consider D(z) = {a}>*{b}*! and L(R) = {a,b}. If b = true, then
we get |z| = 1; otherwise, nothing can be inferred: 0 < |z| < 2.

The reified regular constraint propagator, summarised in Fig. 3, takes the
current domain B = D(b) of Boolean variable b, the current domain X = D(x)
of string variable z, the automata R, and returns a triple (B’, X', s), where B’
(resp., X’) is an updated domain for b (resp., x) and s is a Boolean value which
determines if the constraint is subsumed (i.e, we cannot propagate further).
Although we assume R is complete, the pseudo code is also correct for arbitrary
automata if we omit the greyed out parts.

The propagation algorithm essentially works in two steps: (i) a forward pass,
where we compute a set of reachable states, potentially detecting inconsistency;

function POST-REIFIED-REGULAR(D, z, R)

if D(b) = {true} then > positive regular constraint
pPOST(minl(R) < |z| < mazl(R))
POST(true < REGULAR(z, R))

else if D(b) = {false} then > complemented regular constraint
PosT(minl(R) < |z| < mazl(R))
POST(true < REGULAR(z, R))

else > general form

POST(b < REGULAR(z, R))

Fig. 2: Pre-checks before actually posting b < = € L(R).

function PROP-REIFIED-REGULAR(B, X = Sil’"l, LSl R =(X,Q, qo, 6, F))

Fo < [{q0}]

foriec1,2,...,ndo > forward pass.
F; < REACH-FWD(B, Q, §, LAST(F;_1), S1"""%)
if LAST(F;) C rej(R) then > x surely rejected

return B N {false}, X, true
if LAST(F;) C acc(R) then > x surely accepted
return B N {true}, X, true

if LAST(Fy,) C F then > x surely accepted
return B N {true}, X, true

if LAST(F,) C Q — F then > x surely rejected
return B N {false}, X, true

if B = {true} then > positive regular constraint
E < vAsT(F,)NF

else if B = {false} then > complemented regular constraint
E < LAsT(Fn)N(Q — F)

else > nothing to propagate
return B, X, false

if £ =0 then > F is the set of feasible ending states.
return 0,0, true

forienn—1,...,1do > backward pass.
E, X| < REACH-BWD(Q, , F;, E, Sli""1)

return B, NORM([X7, ..., X}]), false

Fig. 3: Propagation algorithm for b < z € L(R).

(ii) a backward pass, where only feasible end-states are considered and the do-
mains of the variables are possibly pruned.

The forward pass keeps track of the sets of states F; reachable by any concrete
string in v(X) after consuming block X[i]. REACH-FWD returns in particular a
sequence F; = [Qi0,- .-, Qi1 Qit+1] of sets of states where, for j = 0,...,1;,
Qi,; is the set of states reachable after consuming ezactly j characters of X[i]
(corresponding to the mandatory part of the block), while @;,+1 is the set of
states reachable after consuming an arbitrary number k € [l;, u;] of characters

of X[i] (corresponding to the optional part of the block). The last set of states
LAST(F;) (we assume that LAST is a function returning the last element of a
sequence) is used to possibly detect when the constraint is subsumed.

After the loop, if all the states of LAST(F;,) are accepting, then the constraint
must hold (i.e., it is subsumed) and we can propagate b = true (similarly, if
they are all rejecting we can propagate b = false). We then calculate the set
of accepting final states F/, and if b is not fixed we return since no propagation
is possible. If E is empty we detect unsatisfiability, and return. Otherwise, we
iterate backward over the blocks of X and we use REACH-BWD to compute the
sets of states that are both reachable and may lead to an accepting state.

At the end of the function, we return the possibly refined domains for vari-
ables b and x. Note that, for the latter, we use the NORM function to make
the sequence of blocks [X7,...,X/] a normalised dashed string. For example,
NORM([{a, b}%2,0°0 {a,b}11]) = {a,b}*>. In the following we shall explain the
forward and backward phases in more details.

function REACH-FWD(B, 6§, Q, Qr, S"*)

Ofwa < {qg— {d(q,c) | c€ S} | g€ Q} > Feasible forward transitions.
Qo <+ Qr
forie1,2,...,ldo > Mandatory region
Qi < quQi_l 6fw¢i(Q)
if Q;, = Qi—1 then > Fixpoint

Qi Qi1 + Q;
return [Qo,...,Q:, Q]
if Qi Crej(R) V Qi C ace(R) then > Constraint subsumed
return [Q;]
Qbfs < QUEUE(Q)
‘ I ifgeqQ
dist + {q»—) too iquQle}
while Qs # [] do > BF'S over optional region.
g POP(Qup)
d <+ dist[q] + 1
if d < u then
for ¢’ € §u4(q) where dist[g'] > d do
PUSH(Quys, q')
distlg'l = d
return [Qo,...,Q:,{q € Q | dist[q] < u}]

Fig. 4: Forward pass of the algorithm. Returns reachable end-states, plus inter-
mediate states needed for the backward pass.

Forward pass The forward pass is implemented by REACH-FWD (see Fig. 4).
It computes a sequence of sets of states [Qo, @1, ..., Qi, Qi+1] that are reachable
after consuming characters in the block S“*. In particular, for 0 < i < [, sets

Q; are those after consuming exactly ¢ characters, while @, collects any states
possible after consuming a number of characters between [and u inclusive.

The mandatory part is straightforward. If we find a set of states always
rejecting (or accepting in the positive case) we can return since the constraint is
subsumed. If instead a set of states (); is identical to the previous set ();_1, then
we have reached a fizpoint: we are finished since Q; = Q;—1 for j =1,...,L

The optional part proceeds by breadth first search (BFS) finding new states
reachable in at most u—[characters. We store in dist dictionary the least distance
to reach any state starting from the states in Q. The queue of states Qs to
expand consists initially of the states of @y, i.e. all the states reachable after
consuming all the I characters of the mandatory part of Sh*.

Note that QUEUE is a function returning a queue containing all the elements
of a given set (the order of the element does not matter here). Functions PUSH
and POP have the usual semantics. We pop states from @y, and if they are less
than v distance we push their neighbors onto the queue as long we have found
a shorter route to them, updating their distance.

The complexity of REACH-FWD is O(|d] x (I + 1)), that for a complete DFA
corresponds to O(|Q| x | X| x (I + 1)), since we consider each transition at most
once in each iteration of the mandatory region, and at most once in the BFS
over the optional region. However, in the case where b = true we could consider
a trim DFA ¢" with || typically far smaller than |Q| x | X].

Backward pass The backward pass of the algorithm calculates the states which
can both reach a final state, and be reached from the start state. The approach
of REACH-BWD (see Fig. 5) is analogous to a reversed forward pass, but uses the
stored reachability vectors F; to compute the intersection.

The first step simulates characters in the optional part of the block. It con-
siders all possible ending states Qg and adds them to a queue. It maintains the
least distance to reach each state in dist. When it pops a state in ¢ € Q; it
updates the least possible distance I’ required to reach g. If such a distance is at
most u — [we collect the characters of the usable transitions into Sop.

If we have reached a state for the first time, we push it onto the BFS queue
Quys, and update its distance. This creates the optional block with length at
least I’ and at most u — I, with all characters met in Spp,.

The remainder is simpler. Given set of states E we could reach after exactly
I characters (and can reach a final state) we collect characters ¢ that might reach
these states in S,,4n, and the states ¢’ that we could reach this state from, to
initialise F for the next iteration. For this step we create a block of unary length
with characters in Sy,4,. Finally we return the (normalised) dashed string of
these [4+ 1 blocks.

The complexity of REACH-BWD is similarly O(|d] x (I 4+ 1)), so the overall
worst-case complexity of PROP-REIFIED-REGULAR is O(|d] x X7, 1;). This means
that, apart from |d|, the complexity of the propagation asymptotically depends
on the characters that must occur in the string, and not on those that may
appear. This makes a big difference when A is big.

function REACH-BWD(S, Q, [Qo, ..., Q1, Qit1], Qr, S°*)
Spwa < {q <+ {(c,qd") | (¢',¢c,q) €6,c€ S} | qeQ} > Backward transitions
Sopt — @
Qbfs < QUEUE(QE)

I + +o0
0 ifge Qr
+o0o ifqge @ —Qk }
while Qus # [] do > BFS over optional region.
q = POP(Quys)
if ¢ € Q; then
" + min(l’, dist[q])
d < dist]q] + 1
if d <wu —1[then
for (c,q') € Spwa(q) where ¢’ € Q41 do
Sopt < Sopt U {C}
if dist[q'] > d then
PUSH(Quss, ')
Qe + QrU{¢}
dist|q'] + d
Xipr = Shy!
E+ QenNQ
foriel,l—-1,...,1do > Mandatory region
E' + Spman < 0
for ¢ € E do
for (C7 q/) € Sbud (q)7 q/ € Qifl do
Sman ¢ Sman U {C}
E' + E' u{d}
E+ FE
Xi — Srlritlln
return E,NORM([X1,..., Xi41])

dist < {q —

Fig. 5: Backward pass of the algorithm. Returns the feasible starting states, and
a dashed string corresponding to the refined block.

As mentioned in Section 2, for some set of strings we cannot define a best
dashed string representation. It is therefore unlikely to have propagators main-
taining consistency notions like, e.g., Generalised Arc Consistency.

If the domain of x has no optional parts, i.e., D(z) = Sil’ll - Sluslnthen
our approach is equivalent to the “standard” CP propagation of [17], where x
corresponds to a vector of l; +. . .+1, integer variables x; ; such that D(x; ;) = S;
fori=1,...,nand j =1,...,l;. This is however not very interesting for string
solving, where typically lengths are unknown and potentially very long.

Reverse propagation We can run the regular propagator in reverse, assuming
we know b = true. In practice, we run PROP-REIFIED-REGULAR (true, X ~1, R™1)
by reversing the dashed string X ~1 = Slnun ... Sil’"l and the automaton R~! =

Fig. 6: Example automata R for propagating in Example 1.

(X,Q,F.{(d',¢,q) | (g,¢,¢") € },{qo}). This has a set of initial states F' rather
than a single state g, but this only requires to initialize Fy with [F].

The reversed automaton is not a DFA hence we must omit the greyed out
code. The advantage of the reversed automaton is that because the propagator
is directional it may propagate where the other direction does not. Using the re-
versed automaton effectively doubles the time for propagation, but if it generates
more propagation this can substantially reduce the total solving time, hence we
leave it on by default in G-STRINGS (however the user can override this option).

Ezample 1. Consider the propagation of the positive constraint (b = true) when
D(x) = {a,b}%*{c,d}**{a,b}*® and automata given by the DFA shown in
Figure 6. The forward propagation determines sets of states F; = [{0}, {0, 1,4}],
F = [{0’ 1, 4}7 {27 5}7 {3}’ {3’ 6}]7 and F3 = [{3’ 6}’ {37 6}]

The backwards pass for block 3 starts from state {6} and determines it can
reach only set of states {6} using {b}. It returns {6}, {b}%>.

The backwards pass for block 2 starts from state {6}, It sets dist[6] = 0 and
the rest to infinity. It then determines it can reach 3 at distance 1, 2 at distance 2,
and 1 at distance 3 (node 0 at distance 4 is not considered since 4 > 5—2). Since
3 € Q2 = {3} is only reachable at distance 1, we find I’ = 1. This creates the
optional block {c,d}'*. We then consider one step backwards from {3} which
reaches {2} and creates block {c}''!, then one step backwards from {2}, which
reaches {1} and creates block {c}!*. The function returns {1}, {c}*?{c,d}!3.

The backwards pass for block 1 starts from state {1} and determines it can
reach {0,4} at distance 1 and {1} at distance 2. We find I’ = 1 and the function
returns {0}, {a,b}1%. So, D(z) becomes {a,b}1*{c}>%{c,d}3{b}"5.

Note the propagator is not idempotent. Running it again will determine the
finer domain {a,b}1*{c}>2{d}"1{c}*2{b}%5. Running the reverse propagator
will split the first block into {a,b}"3{a}!'!. We can thus infer that substring
accd must occur in z. d

4 Regular expressions decomposition

A natural way to express a constraint of the form = € L(R), where R is an au-
tomaton, is to give an equivalent formulation € L(r) in terms of an equivalent
regular expression r € RE. We observed that these kind of constraints often
occur in SMTLIB instances derived from real-world program analysis.

z € L(9) = false ze€Ll(c)Fx=c ifce XU{e} (1)
x€L(r1-r2) Ex1 € L(ri) ANz2 € L(r2) ANz = 1 - 22 (2)

x € L(r1|re) Ex1 € L(ri) Axe € L(r2) An € {1,2} Az = [z1, 22][n] 3)
zeL((r]...|me)") Bz {017...,ck}0”\ if Liri))={c;} CXfori=1,...,k (4)
(®)

zeL(r)Ene[0, Az=w" if L(r)={w} C X"

Fig. 7: Decomposition rules. Variables =1,z are new string variables, n a new
integer variable, and 7,71, 79, ..., 7 are regular expressions.

We can easily deal with constraints of the form b < z € L(r) by simply
propagating b = REGULAR(x, DFA(r)), where DFA is the function introduced in
Section 2.3 for converting a given regular expression into a DFA. However, if
b = true, we could avoid instantiating a propagator entirely.

First, we observe that dashed strings are themselves a particular class of
regular expressions: the language v(X) denoted by X = §i™ S,lj"’“ actu-

ally corresponds to L(r) NS where 7 = 7" -7t with r; = (¢;1] ... |¢im,),
! times u—I[times
——
S; = {¢i1,...,Cin }, and Té’“ is a shorthand for (r;---r;)((rile)--- (r;le)) for
1=1,...,k. Hence we can directly encode some classes of REGULAR constraints

as domain constraints on dashed strings (e.g., the occurrence of characters or
substrings in a given string). Moreover, with the help of auxiliary string con-
straints we can also encode more complex regular expressions. For example,
x € L((fee|foo)bar) can be reformulated into z = yzAy € {fee, foo} Az = bar.

Unfortunately, not all regular expressions are easily decomposable into basic
string constraints. For example, we can easily map = € L((a|b|c)*) into the
domain constraint z :: {a,b, c}** but we cannot do the same for the constraint
x € L((albc)*) because this would require to have a propagator for the iterated
concatenation of sets of strings {a,bc}™,n > 0.1

Hence, we use simple syntactic pre-checks to identify opportunities for decom-
posing a constraint true < x € L(r) into a conjunction CyA. . .AC}, of basic string
constraints (if D(b) # {true}, we simply propagate b = REGULAR(x, DFA(7))).
We indicate with = € L(r) = C1 A ... A C} such a decomposition.

Fig. 7 summarises the decomposition rules we implemented. Rules 1-2 are
straight rewritings into equality/concatenation. Rule 3 encodes the construct
x € {x1,z2} by means of the ELEMENT global constraint [8]. Rule 4 decomposes
into a domain constraint when a regular expression r; denotes a single character
¢;, while rule 5 takes advantage of iterated concatenation when r denotes a
single string w. In addition to these rules, we also implemented a number of

Note this is different from the iterated concatenation of strings. For example,
encoding = € L((albc)*) with x = y" An > 0 Ay € {a,bc} is unsound because this
actually encodes the constraint = € L(a*|(bc)*) (e.g., abc € L((albc)*) — L(a*|(bc)")).

other rules to cope with SMTLIB syntax (e.g., we also decompose = € L(a, b])
and = € L([a, b]*), where [a,b] is the range of characters denoted by (a] ... |b).

Note that this reformulation does not detect all opportunities for reformula-
tion. Indeed, deciding DFA primality — that is, whether there exist non-trivial
Ly, Ly such that L(R) = Ly Ly for a given DFA R — is PSPACE-hard [15], so an
efficient complete method is vanishingly unlikely. Nevertheless, devising a ‘good
enough’ decomposition method remains an interesting challenge.

As we shall see in Section 5, decomposing a regular expression r can be
advantageous since it can significantly reduce the number of states of DFA(r),
especially when dealing with expressions involving very long fixed strings, and
the number of propagations performed. Let us clarify this by providing an ex-
ample extracted from the empirical evaluation of Section 5.

Ezample 2. Consider the constraint € L(a*bb*)Ax € L((a|b)*ba(alb)*), which
is clearly unsatisfiable since the ba sub-string in the second expression conflicts
with the first expression, imposing each character b to be followed by only b’s.

If we do not decompose the regular expressions, the propagation algorithm is
only able to infer that z :: {a,b}** *{b}"! from the corresponding DFAs. This
entails that we have to branch on x and explore all the possible alternatives to
detect the unsatisfiability: the solving time clearly depends on .

Conversely, by decomposing the expressions into basic string constraints we
can infer that :: {a}** " {b}"* Az = {a,b}2 2 {6} {a} {2, b} 2. In this
case, no search is performed because the sweep-based equate algorithm [5] im-
plemented in G-STRINGS instantaneously triggers a failure since the two dashed
strings are not equatable. a

5 Evaluation

We implemented the REGULAR propagator in the G-STRINGS solver, and we
also implemented a MiniZinc/FlatZinc interface for it [3]. The user can either
specify a (reified) REGULAR constraint in terms of a regular expression or a
finite state automaton. We tested G-STRINGS on three well-known SMTLIB
string benchmarks containing regular expressions:

— APPSCAN: 8 satisfiable instances derived from security analysis performed
by IBM AppScan tool [13]. We discarded two of them (namely, t01 and t06)
since they do not contain regular. The remaining 6 instances contain only
decomposable and non-reified regular expressions.

— STRANGER: 3392 instances derived by Stranger [22] tool from real-world PhP
programs. These instances are not publicly available and the authors sent
them to us privately, but 56 of them were malformed. We thus ended up
with 3336 SMTLIB instances, containing only decomposable and non-reified
regular expressions.

— NORN: 1027 instances generated by a model checker based on CEGAR re-
finement [2], from which we discarded 24 instances not containing regular

Table 1: APPSCAN results. Times are in seconds.

Instances | t02 t03 t04 t05 t07 t08
G-STRINGS|0.00 0.00 0.00 0.00 0.00 0.00
7Z3sTrR3 [0.10 0.29 0.38 0.97 2.09 0.02
CvC4 1]0.01 6.12 T 5.75 0.00 0.27

Table 2: STRANGER results. Times are in seconds.

SAT UNS TOT
Solved|Runtime||Solved |Runtime||Solved|Runtime
G-DEcowmP|| 1254 | 0.20 2082 | 0.00 3336 | 0.08
G-NotDEec|| 1254 | 0.65 2082 | 0.01 3336 | 0.25

CVC4 1247 2.19 2082 0.01 3329 0.88
7.3STR3 936 76.27 2082 0.09 3018 | 28.68

expressions. In the remaining 1003 instances, 942 contain at least a non-
decomposable expression and 870 contain at least a reified regular expres-
sions (all of these are negated expressions of the form false < x € L(r)).

We compared G-DECOMP (the version of G-STRINGS that always unfolds
decomposable, not-reified regular expressions using the method of Section 4)
and G-NOTDEC (the version that never unfolds them) against three state-of-
the-art string solvers: two SMT solvers supporting the theory of strings (namely,
Z3sTR3 [9] and CVC4 [14]), and a CP solver that extends GECODE for support-
ing bounded-length string variables, i.e., GECODE+S [18].!

Note that GECODE4S is no longer actively developed. So, since its FlatZinc
support is incomplete, we used a compiler from SMTLIB to C++ that the authors
used for their previous experiments (here we call it smt2cpp). For G-DECOMP
and G-NOTDEC we instead took advantage of the SMTLIB to MiniZinc compiler
introduced in [4]. We run all the experiments on a Ubuntu 15.10 machine with
16 GB of RAM and 2.60 GHz Intel® i7 CPU by setting a solving timeout of
T = 300 seconds and varying A € {500, 1000, 10000}.

5.1 AppScan and Stranger benchmarks

Results on APPSCAN benchmark are shown in Table 1. GECODE+S is not in-
cluded in the comparison since smt2cpp could not process these instances (state-
ments like logical implication and if-then-else are not supported).
APPSCAN is not a challenging benchmark: SMT solvers can solve most of the
problems in a short time, while G-STRINGS resolution is instantaneous. Here we

"We used Z3sTR3 4.6.2 and CVC4 1.5. The source code of the experiments is
publicly available at: https://bitbucket.org/robama/exp_cp_2018.

do not discriminate between G-DECcOMP and G-NOTDEC since they both find
a solution in 0 seconds, regardless of maximum length .

Results on the STRANGER benchmark are shown in Table 2. Solving time is
set to T when a solver can not solve an instance. Note that we are considering
the simplified instances used also in [12], where the str.replaceall operation
is replaced by str.replace. GECODE+S is not included in the results because
of unsupported constraints (e.g., string replacement) and characters (all the
STRANGER instances contain extended ASCII characters, while the alphabet
size of GECODE+S is limited to 64 characters).

For G-DEcoMP and G-NOTDEC, only the results with A = 10000 are pre-
sented: here strings can be very long, so with A = 500 we have 107 unsound
results: we instantaneously detect the unsatisfiability because at least one string
has length greater than 500. With A = 1000, we have 50 unsound results. For
both G-DeEcoMP and G-NOTDEC, we branched on binary variables first.

The two versions of G-STRINGS outperform the SMT solvers, especially on
the satisfiable instances (the unsatisfiable ones appear very easy to solve). We
can also observe the benefits of decomposition (all the REGULAR constraints of
this benchmark can be rewritten into concatenation constraints). On average,
G-DECOMP is more than three times faster than G-NoOTDEC.

5.2 Norn benchmark

Results on the 1003 instances of the NORN benchmark are shown in Table 3. Note
that smt2cpp can process only 150 of them, mainly because GECODE+S does
not support negated regular expressions. CVC4 and Z3STR3 work on unbounded
strings, so they do not use a maximum string size.

The results clearly show that G-STRINGS is faster and more powerful than
alternative approaches. The advantages of decomposition are also illustrated,
although the performance of G-NOTDEC and G-DECOMP is not so different (in
particular on satisfiable instances they are equivalent).

Conversely to the STRANGER benchmark here satisfiable instances are trivial,
while unsatisfiable ones are harder to solve. This is in general not surprising for
CP solvers — especially those like GECODE not employing nogood learning —
and this in particular holds for G-STRINGS, which is based on GECODE and
for which the resolution is obviously influenced by A size. As an example, let us
consider the only instance that no solver can solve within the time limit 7°.* This
unsatisfiable instance is hard to solve since it contains a pattern of the form:

z,y = oM A z-z-ye L((bz'b)*) A z-z-y-b¢ L((bz*d)*b)

with x,y string variables and b,z characters of Y. Unfortunately, our propaga-
tion algorithms cannot further narrow the domains of and y, and thus we have
to rely on branching. This means that O(|D(z) x D(y)|) = O(\?) nodes must
be explored to detect the inconsistency.

'Precisely, this is the instance 489 of the HammingDistance class. G-DECOMP with
A = 500 takes 454.6 seconds to detect the unsatisfiability. Clearly, we can only prove
that there is no solution where all string variables = have length |z| < A.

Table 3: NORN results. Times are in seconds.

Solver G-DEcoMmP G-NoTtDEC GECODE+S

A |500 1000 10000| 500 1000 10000|C Y4 [Z3STR3 | 560" 1000 10000
o Solved | 688 688 688 |688 688 688 | 627 | 178 | 75 75 43
=/Runtime|0.00 0.00 0.00[0.00 0.00 0.00 | 29.82 | 223.10 |267.65 268.43 283.90
% Solved | 314 314 312 | 312 309 307 | 182 | 89 a4 25
Z|Runtime| 0.96 1.00 3.81 |4.82 5.75 7.62 |123.64| 214.02 | 260.3 261.54 276.88
=[Solved [1002 1002 1000 [1000 997 995 | 809 | 267 | 116 116 68
S|Runtime|0.30 0.31 1.20 |1.51 1.81 2.39 | 58.72 | 265.38 |266.31 248.31 281.74

Table 4: NORN results on the 116 instances that GECODE+S can solve.

Solver G-DEcoMP G-NoTDEC GECODE+S

A 1500 1000 1000|500 1000 10000| 500 1000 10000 |C VC* [£35TR3
Solved |116 116 116 |116 115 115 |116 116 68 | 104 | 46
Runtime|0.00 0.00 0.00 [1.20 2.59 2.59 |0.69 8.69 142.09| 32.72 | 181.41

GECODE+4S is the closest approach to G-STRINGS. It implements the CP
approach of [17] with a termination character for strings with length less than
A. If we consider only the 116 instances that GECODE+S can correctly solve (see
Table 4) G-STRINGS is on average still faster and, as already observed in [5, 6],
its performance decay is less pronounced as A grows.

6 Conclusion

We have presented a propagation algorithm for enforcing REGULAR constraints
over dashed strings. Unlike existing propagators for REGULAR, the algorithm
runs in time independent of the upper bound on the string length. We have also
identified a sub-class of regular expressions which may be translated directly
into dashed string domain constraints.

We have demonstrated the effectiveness of the propagator on three sets of
existing string constraint problems. On these benchmarks, G-STRINGS is con-
siderably faster and more robust than existing solvers.

We also defined the first propagator we are aware of for reified REGULAR. The
same modifications we use here could be adapted to create a reified REGULAR
propagator on fixed length arrays, as is standard in CP.

Acknowledgments

This work is supported by the Australian Research Council (ARC) through
Linkage Project Grant LP140100437 and Discovery Early Career Researcher
Award DE160100568.

References

1.

10.

11.

12.

13.

14.

15.

Abdulla, P.A.; Atig, M.F., Chen, Y., Diep, B.P., Holik, L., Rezine, A., Riimmer,
P.: Flatten and conquer: a framework for efficient analysis of string constraints. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp.
602-617 (2017)

Abdulla, P.A., Atig, M.F., Chen, Y., Holik, L., Rezine, A., Riimmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: CAV. LNCS, vol. 9206, pp.
462-469. Springer (2015)

Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc
with strings. In: Logic-Based Program Synthesis and Transformation - 25th Inter-
national Symposium, LOPSTR, 2016 (2016), https://arxiv.org/abs/1608.03650
Amadini, R., Gange, G., Stuckey, P.J.: Propagating lex, find and replace with
dashed strings. In: To appear in Fifteenth International Conference on Integra-
tion of Artificial Intelligence and Operations Research techniques in Constraint
Programming. LNCS, Springer (2018)

Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string cos-
ntraint solving. In: To appear in AAAT 2018 (2018)

Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) Principles and Practice of Constraint Pro-
gramming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10416, pp. 3-20. Springer (2017)

Bartdk, R.: Modelling resource transitions in constraint-based scheduling. In: SOF-
SEM 2002: Theory and Practice of Informatics, 29th Conference on Current Trends
in Theory and Practice of Informatics, Milovy, Czech Republic, November 22-29,
2002, Proceedings. pp. 186-194 (2002)

Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present and future. Constraints 12(1), 21-62 (March 2007), the catalogue is
available at http://sofdem.github.io/gccat/

Berzish, M., Zheng, Y., Ganesh, V.: Z3str3: A string solver with theory-aware
branching. CoRR abs/1704.07935 (2017), http://arxiv.org/abs/1704.07935
Cheng, K., Yap, R.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: 14th International Conference on Principles and Process of Constraint
Programming. LNCS, vol. 5202, pp. 509-523 (2008)

Gecode Team: Gecode: Generic constraint development environment (2016), avail-
able at http://www.gecode.org

Holik, L., Janku, P., Lin, A.W., Riimmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1-4:32
(2018)

IBM: Security AppScan (2018), available at https://www.ibm.com/security/
application-security/appscan

Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: CAV. LNCS, vol. 8559,
pp. 646—662. Springer (2014)

Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories:
complexity and tractability. In: Paredaens, J., Gucht, D.V. (eds.) Proceedings of
the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA. pp.
239-250. ACM (2010)

16.

17.

18.

19.

20.

21.

22.

Perez, G., Régin, J.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) Principles and Practice of Constraint Programming - 20th
International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8656, pp. 606-621. Springer (2014)
Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) Proceedings of the 10th International Conference on
Principles and Practice of Constraint Programming. LNCS, vol. 3258, pp. 482-495.
Springer-Verlag (2004)

Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation of
bounded-length sequence variables. In: Fourteenth International Conference on In-
tegration of Artificial Intelligence and Operations Research techniques in Con-
straint Programming. LNCS, Springer (2017)

Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis
based on monadic second-order logic. ACM Transactions on Software Engineer-
ing Methodology 22(4), 33 (2013)

Thomé, J., Shar, L.K., Bianculli, D., Briand, L.C.: Search-driven string constraint
solving for vulnerability detection. In: Proceedings of the 39th International Con-
ference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017. pp. 198-208 (2017)

Trinh, M., Chu, D., Jaffar, J.: S3: A symbolic string solver for vulnerability detec-
tion in web applications. In: SIGSAC. pp. 1232-1243. ACM (2014)

Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool
for PHP. In: TACAS. LNCS, vol. 6015, pp. 154-157. Springer (2010)

University Library

* o A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Amadini, R;Gange, G;Stuckey, PJ

Title:
Propagating Regular membership with dashed strings

Date:
2018-01-01

Citation:

Amadini, R., Gange, G. & Stuckey, P. J. (2018). Propagating Regular membership with
dashed strings. Hooker, J (Ed.) Principles and Practice of Constraint Programming, 11008
LNCS, pp.13-29. Springer Nature. https://doi.org/10.1007/978-3-319-98334-9_2.

Persistent Link:
http://hdl.handle.net/11343/241771

http://hdl.handle.net/11343/241771

