Abstract
Bounded fractional hypertree width () is the most general known structural property that guarantees polynomial-time solvability of the constraint satisfaction problem. Bounded
generalizes other structural properties like bounded induced width and bounded hypertree width.
We propose, implement and test the first practical algorithm for computing the and its associated structural decomposition. We provide an extensive empirical evaluation of our method on a large class of benchmark instances which also provides a comparison with known exact decomposition methods for hypertree width. Our approach is based on an efficient encoding of the decomposition problem to SMT (SAT modulo Theory) with Linear Arithmetic as implemented in the SMT solver
. The encoding is further strengthened by preprocessing and symmetry breaking methods. Our experiments show (i) that
can indeed be computed exactly for a wide range of benchmark instances, and (ii) that state-of-the art SMT techniques can be successfully applied for structural decomposition.
The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and P26696, and the German Science Fund (DFG), Grant HO 1294/11-1. Fichte and Hecher are also affiliated with the University of Potsdam, Germany.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core shrinking. Theory Pract. Log. Program. 16(5–6), 533–551 (2016)
Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The iBench integration metadata generator. In: Li, C., Markl, V. (eds.) Proceedings of Very Large Data Bases (VLDB) Endowment, vol. 9:3, pp. 108–119. VLDB Endowment, November 2015. https://github.com/RJMillerLab/ibench
Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: An XML-Based Format Designed to Represent Combinatorial Constrained Problems. http://xcsp.org (2016)
Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree decompositions. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) 16th International Symposium on Experimental Algorithms, SEA 2017, 21–23 June 2017, London, UK, LIPIcs, vol. 75, pp. 28:1–28:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)
Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D., Tsamoura, E.: Benchmarking the chase. In: Geerts, F. (ed.) Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2017), pp. 37–52. Association for Computing Machinery, New York, Chicago (2017). https://github.com/dbunibas/chasebench
Berg, J., Lodha, N., Järvisalo, M., Szeider., S.: MaxSAT benchmarks based on determining generalized hypertree-width. Technical report, MaxSAT Evaluation 2017 (2017)
Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evaluation. In: 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Computer Society (2014)
Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998)
Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Discrete Math. 6(2), 181–188 (1993)
Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a survey. Constraints 21(2), 115–144 (2016)
Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)
Committee, M.S.: IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–70, August 2008
Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. I, chap. 7, pp. 209–244. Elsevier (2006)
Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameterized algorithms and computational experiments challenge: the second iteration. In: Lokshtanov, D., Nishimura, N. (eds.) Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC 2017), pp. 30:1–30:13. LIPIcs (2017)
Durand, A., Mengel, S.: Structural tractability of counting of solutions to conjunctive queries. Theoret. Comput. Sci. 57(4), 1202–1249 (2015)
Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: A Benchmark Collection of Hypergraphs, June 2018. https://doi.org/10.5281/zenodo.1289383
Fichte, J.K., Hecher, M., Lodha, N., Szeider, S.: Analyzed Benchmarks and Raw Data on Experiments for FraSMT, June 2018. https://doi.org/10.5281/zenodo.1289429
Fichte, J.K., Lodha, N., Szeider, S.: SAT-based local improvement for finding tree decompositions of small width. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 401–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_25
Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: HyperBench: A Benchmark of Hypergraphs (2017). http://hyperbench.dbai.tuwien.ac.at
Fischl, W., Gottlob, G., Pichler, R.: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems. In: den Bussche, J.V., Arenas, M. (eds.) Conference SIGMOD/PODS 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018, pp. 17–32. ACM (2018)
Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 29(1), 24–32 (1982)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP Solving with Clingo. CoRR abs/1705.09811 (2017). http://arxiv.org/abs/1705.09811
Geerts, F., Mecca, G., Papotti, P., Santoro, D.: Mapping and cleaning. In: Cruz, I., Ferrari, E., Tao, Y. (eds.) Proceedings of the IEEE 30th International Conference on Data Engineering (ICDE 2014), pp. 232–243, March 2014
Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)
Gottlob, G., Leone, N., Scarcello, F.: On tractable queries and constraints. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 1–15. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48309-8_1
Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition. J. Exp. Alg. 13, 1:1.1–1:1.19 (2009)
Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings of the of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 289–298. ACM Press (2006)
Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Alg. 11(1) (2014). Article 4, 20
Guo, Y., Pan, Z., Heflin, J.: LUBM Benchmark OWL Knowl. Base Syst. Web semantics: science, services and agents on the world wide web 3(2), 158–182 (2005)
Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Gäel Varoquaux, T.V., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, USA, pp. 11–15, August 2008
Kaminski, R., Schneider, M., Rabener, T., et al.: Benchmark-Tool (2017). https://github.com/potassco/benchmark-tool
Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In: Milo, T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01 2016. pp. 13–28. Association for Computer Machinery, New York (2016)
Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. CoRR abs/1504.04044 (2017). http://arxiv.org/abs/1504.04044v6. Full version of [32]
Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How good are query optimizers, really? Proc. Very Large Data Bases (VLDB) Endow. 9(3), 204–215 (2015)
Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_12
Lodha, N., Ordyniak, S., Szeider, S.: SAT-encodings for special treewidth and pathwidth. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 429–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_27
Marx, D.: Approximating fractional hypertree width. TALG 6(2) (2010). Article 17, 29
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Rose, D.J.: On simple characterizations of \(k\)-trees. Discrete Math. 7, 317–322 (1974)
van Rossum, G.: Python tutorial. CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, May 1995
Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability Boolean Model. Comput. 7, 139–144 (2011)
Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_6
Transaction Processing Performance Council (TPC): TPC-H decision support benchmark. Technical report, TPC (2014). http://www.tpc.org/tpch/default.asp
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Fichte, J.K., Hecher, M., Lodha, N., Szeider, S. (2018). An SMT Approach to Fractional Hypertree Width. In: Hooker, J. (eds) Principles and Practice of Constraint Programming. CP 2018. Lecture Notes in Computer Science(), vol 11008. Springer, Cham. https://doi.org/10.1007/978-3-319-98334-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-98334-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98333-2
Online ISBN: 978-3-319-98334-9
eBook Packages: Computer ScienceComputer Science (R0)