Skip to main content

Energy-Based Centroid Identification and Cluster Propagation with Noise Detection

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11055))

Included in the following conference series:

Abstract

Clustering algorithms are used to partition an existing set of objects into groups according to similarity of their attributes. Parametric algorithms for determining initial points (centroids) and subsequent cluster propagation are proposed. The principle of competitive growth of clusters due to the absorption of boundary (contiguous) objects is used. The object is absorbed by that cluster or transferred from an adjacent cluster if it maximizes the total energy of cluster. The remaining objects that have not been clustered are classified as noise. Then the parameter identification problem for the algorithm is considered. Preliminary results on clustering and parameter identification are obtained on several public test data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comparing different clustering algorithms on toy datasets. http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

  2. Online clustering data sets UCI. https://archive.ics.uci.edu/ml/datasets.html

  3. Albertini, M.K., de Mello, R.F.: Energy-based function to evaluate data stream clustering. Adv. Data Anal. Classif. 7(4), 435–464 (2013). https://doi.org/10.1007/s11634-013-0145-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagirov, A.M.: Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recognit. 41(10), 3192–3199 (2008). https://doi.org/10.1016/j.patcog.2008.04.004. http://www.sciencedirect.com/science/article/pii/S0031320308001362

    Article  MATH  Google Scholar 

  5. Carrizosa, E., Alguwaizani, A., Hansen, P., Mladenović, N.: New heuristic for harmonic means clustering. J. Global Optim. 63(3), 427–443 (2015). https://doi.org/10.1007/s10898-014-0175-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  7. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13, 780–784 (2002)

    Article  Google Scholar 

  8. Karlsson, C. (ed.): Handbook of Research on Cluster Theory. Edward Elgar Publishing, Cheltenham (2010)

    Google Scholar 

  9. Khelifi, L., Mignotte, M.: EFA-BMFM: a multi-criteria framework for the fusion of colour image segmentation. Inf. Fusion 38, 104–121 (2017)

    Article  Google Scholar 

  10. Noack, A.: Energy-based clustering of graphs with nonuniform degrees. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 309–320. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_28

    Chapter  Google Scholar 

  11. Wu, X., et al.: Top 10 algorithms in datamining. Knowl. Inf. Syst. 14(1), 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

  12. Xie, L., Lu, C., Mei, Y., Du, H., Man, Z.: An optimal method for data clustering. Neural Comput. Appl. 27(2), 283–289 (2016). https://doi.org/10.1007/s00521-014-1818-3

    Article  Google Scholar 

  13. Yue, Z., Chuansheng, Z.: A new clustering algorithm based on probability. In: Pan, J.-S., Snasel, V., Corchado, E.S., Abraham, A., Wang, S.-L. (eds.) Intelligent Data analysis and its Applications, Volume II. AISC, vol. 298, pp. 119–126. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07773-4_12

    Chapter  Google Scholar 

  14. Zhou, H., Yuan, X., Cui, W., Qu, H., Chen, B.: Energy-based hierarchical edge clustering of graphs. In: PacificVIS 2008, Visualization Symposium, pp. 55–61 (2008)

    Google Scholar 

Download references

Acknowledgments

This research is conducted within the framework of the grant num. BR05236839 “Development of information technologies and systems for stimulation of personality’s sustainable development as one of the bases of development of digital Kazakhstan”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Krassovitskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krassovitskiy, A., Mussabayev, R. (2018). Energy-Based Centroid Identification and Cluster Propagation with Noise Detection. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98443-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98442-1

  • Online ISBN: 978-3-319-98443-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics