Skip to main content

TRANS-AM: Discovery Method of Optimal Input Vectors Corresponding to Objective Variables

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11031))

Included in the following conference series:

Abstract

In various fields, ensemble models by supervised learning are effective, but the models cannot tell us how to modify the input vector so that we will increase the objective variable more than a given threshold or decrease it less than the threshold. In this paper, we propose a method, TRANS-AM, that can discover an input vector satisfying the condition of changing of the objective variable in regression problems by using a property of regression tree. The regression tree splits input space into subspaces. There are subspaces with corresponding objective variables satisfying such a condition. By transforming the input vector to new input vectors belonging to one of the subspaces, we can discover a new input vector whose distance from the original input vector is minimum by satisfying the condition to change the objective variable. The reason for “minimum” is the cost—if the new input vector is far from the original one, we need the significant cost to modify the original input vector to the new one. We evaluated the proposed method through numerical simulations and investigated that the proposed method works well; the ratio of the number of discovered input vectors satisfying the condition per the number of discovered input vectors is \(60\%\) for the datasets generated through logistic function.

H. Tanaka—Presently with Research Laboratory, NTT DOCOMO Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 465–474. ACM (2017)

    Google Scholar 

  3. Cao, L., Luo, D., Zhang, C.: Knowledge actionability: satisfying technical and business interestingness. IJBIDM 2, 496–514 (2007)

    Article  Google Scholar 

  4. Hilderman, R.J., Hamilton, H.J.: Applying objective interestingness measures in data mining systems. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 432–439. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_47

    Chapter  Google Scholar 

  5. Liu, B., Hsu, W.: Post-analysis of learned rules. In: AAAI/IAAI, vol. 1, pp. 828–834 (1996)

    Google Scholar 

  6. Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 125–134. ACM (1999)

    Google Scholar 

  7. Cao, L., Zhang, C.: Domain-driven, actionable knowledge discovery. IEEE Intell. Syst. 22(4) (2007)

    Google Scholar 

  8. Cao, L., Zhao, Y., Zhang, H., Luo, D., Zhang, C., Park, E.K.: Flexible frameworks for actionable knowledge discovery. IEEE Trans. Knowl. Data Eng. 22(9), 1299–1312 (2010)

    Article  Google Scholar 

  9. Du, J., Hu, Y., Ling, C.X., Fan, M., Liu, M.: Efficient action extraction with many-to-many relationship between actions and features. In: van Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS (LNAI), vol. 6953, pp. 384–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24130-7_29

    Chapter  Google Scholar 

  10. Karim, M., Rahman, R.M.: Decision tree and naive bayes algorithm for classification and generation of actionable knowledge for direct marketing. J. Softw. Eng. Appl. 6(04), 196 (2013)

    Article  Google Scholar 

  11. Yang, Q., Yin, J., Ling, C., Pan, R.: Extracting actionable knowledge from decision trees. IEEE Trans. Knowl. Data Eng. 19(1), 43–56 (2007)

    Article  Google Scholar 

  12. Yang, Q., Yin, J., Ling, C.X., Chen, T.: Postprocessing decision trees to extract actionable knowledge. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 685–688. IEEE (2003)

    Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  14. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests and boosted trees. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 179–188. ACM (2015)

    Google Scholar 

  15. Manindra, A., Thomas, T.: Satisfiability problems. Technical report (2000)

    Google Scholar 

  16. CPLEX, I.I.: V12. 1: User’s manual for cplex. Int. Bus. Mach. Corp. 46(53), 157 (2009)

    Google Scholar 

  17. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  18. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  19. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  20. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  21. Tyree, S., Weinberger, K.Q., Agrawal, K., Paykin, J.: Parallel boosted regression trees for web search ranking. In: Proceedings of the 20th International Conference on World Wide Web, pp. 387–396. ACM (2011)

    Google Scholar 

Download references

Acknowledgement

This research was partially supported by NAIST Big Data Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroaki Tanaka , Yu Suzuki , Koichiro Yoshino or Satoshi Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, H., Suzuki, Y., Yoshino, K., Nakamura, S. (2018). TRANS-AM: Discovery Method of Optimal Input Vectors Corresponding to Objective Variables. In: Ordonez, C., Bellatreche, L. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2018. Lecture Notes in Computer Science(), vol 11031. Springer, Cham. https://doi.org/10.1007/978-3-319-98539-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98539-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98538-1

  • Online ISBN: 978-3-319-98539-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics