Abstract
Adapting a business process to different context requires identifying various situations and evolving the process to support such situations. Previous work focused on modeling, observing and collecting contextual information. Furthermore, impact of context on process or resource performance has been studied. However, much of the work considers explicit contextual information that is defined by domain experts. There are several implicit contextual dimensions, that are difficult to model as all situations cannot be anticipated a priori. Context mining involves analysis of process logs to identify context and correlate with process performance indicators or outcomes. In this work, we leverage unstructured data available in user comments or mails to discover implicit context of the process. We automatically analyze textual data and group process instances by applying information extraction and text clustering techniques. Groups of process instances are correlated to their process outcomes to filter irrelevant information. We apply the approach on real-world process logs to identify contextual information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket dispatch in an IT service environment. In: KDD, pp. 1393–1401 (2012)
Allahyari, M., et al.: Text summarization techniques: a brief survey. In: CoRR abs/1707.02268 (2017)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
del-RÃo-Ortega, A., Resinas Arias de Reyna, M., Durán Toro, A., Ruiz-Cortés, A.: Defining process performance indicators by using templates and patterns. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 223–228. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5_18
Dourish, P.: What we talk about when we talk about context. Pers. Ubiquitous Comput. 8(1), 19–30 (2004). ISSN 1617-4909
Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545 (2011)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007). https://doi.org/10.1126/science.1136800
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36
Ghattas, J., Soffer, P., Peleg, M.: A formal model for process context learning. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 140–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_14
Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support Syst. 59, 93–107 (2014)
Ghattas, J., Peleg, M., Soffer, P., Denekamp, Y.: Learning the context of a clinical process. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 545–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_53
Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In: 2007 IEEE International Conference on Services Computing - Workshops (SCW 2007), 9–13 July 2007, Salt Lake City, Utah, USA, pp. 167–174 (2007)
Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-Means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979). ISSN 00359254, 14679876
Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR, SIGIR 1999, 15–19 August 1999, Berkeley, CA, USA, pp. 50–57 (1999)
Kiseleva, J.: Context mining and integration into predictive web analytics. In: 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, 13–17 May 2013, Companion Volume, pp. 383–388 (2013)
Kusner, M.J., et al.: From word embeddings to document distances. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, pp. 957–966 (2015)
Mani, S., et al.: Panning requirement nuggets in stream of software maintenance tickets. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014, pp. 678–688 (2014)
Marcus, M., et al.: The Penn Treebank: annotating predicate argument structure. In: Proceedings of the Workshop on Human Language Technology, HLT 1994, pp. 114–119. Association for Computational Linguistics, Plainsboro (1994). ISBN 1-55860-357-3
Mikolov, T., et al.: Efficient estimation of word representations in vector space. In: CoRR abs/1301.3781 (2013)
Osiński, S., Stefanowski, J., Weiss, D.: Lingo: search results clustering algorithm based on singular value decomposition. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. AINSC, vol. 25, pp. 359–368. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39985-8_37
Potharaju, R., Jain, N., Nita-Rotaru, C.: Juggling the Jigsaw: towards automated problem inference from network trouble tickets. In: Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA, 2–5 April 2013, pp. 127–141 (2013)
Saidani, O., Nurcan, S.: Context-awareness for adequate business process modelling. In: Proceedings of the Third IEEE International Conference on Research Challenges in Information Science, RCIS 2009, Fès, Morocco, 22–24 April 2009, pp. 177–186 (2009)
Saidani, O., Rolland, C., Nurcan, S.: Towards a generic context model for BPM. In: 48th Hawaii International Conference on System Sciences, HICSS 2015, Kauai, Hawaii, USA, 5–8 January 2015, pp. 4120–4129 (2015)
Shao, Q., et al.: Efficient ticket routing by resolution sequence mining. In: Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining, KDD 2008, Las Vegas, Nevada, USA, pp. 605–613 (2008). ISBN 978-1-60558-193-4
Sindhgatta, R., Ghose, A., Dam, H.K.: Context-aware analysis of past process executions to aid resource allocation decisions. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 575–589. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_35
Sindhgatta, R., Ghose, A., Dam, H.K.: Context-aware recommendation of task allocations in service systems. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 402–416. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0_25
Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)
Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23
Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd Annual International ACM SIGIR, SIGIR 1999, Berkeley, California, USA, pp. 42–49 (1999)
Zhou, W., et al.: Resolution recommendation for event tickets in service management. IEEE Trans. Netw. Serv. Manag. 13(4), 954–967 (2016). ISSN 1932–4537
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sindhgatta, R., Ghose, A., Khanh Dam, H. (2018). Leveraging Unstructured Data to Analyze Implicit Process Context. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds) Business Process Management Forum. BPM 2018. Lecture Notes in Business Information Processing, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-319-98651-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-98651-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98650-0
Online ISBN: 978-3-319-98651-7
eBook Packages: Computer ScienceComputer Science (R0)