Skip to main content

The Runs Theorem and Beyond

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11088))

Included in the following conference series:

Abstract

Repetitions in a string are fundamental properties the string possesses, which have been extensively studied in word combinatorics and utilized in many efficient string processing algorithms. Particularly maximal repetitions, also known as runs, are useful for representing all the repetitions in the string. Since it was shown that the number of runs in a string of length n is upper bounded by O(n) [Kolpakov and Kucherov, FOCS, pp. 596–604, 1999], the following conjecture (known as the “runs” conjecture) have been attracting the attention of many researchers: The number of runs in a string of length n is upper bounded by n. This conjecture was recently solved affirmatively using a characterization based on Lyndon words [Bannai et al., SIAM J Comput, pp. 1501–1514, 2017]. The characterization not only gives a surprisingly simple proof to the 15-years open problem but also provides completely new insights on how repetitions are packed into a string. In this article, we will briefly review the runs theorem and some related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannai, H., Giraud, M., Kusano, K., Matsubara, W., Shinohara, A., Simpson, J.: The number of runs in a ternary word. In: Proceedings of PSC, pp. 178–181 (2010)

    Google Scholar 

  2. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “Runs” Theorem, arXiv:1406.0263v4 (2014)

  3. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Proceedings of SODA, pp. 562–571 (2015)

    Google Scholar 

  4. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

    Article  MathSciNet  Google Scholar 

  5. Baturo, P., Piatkowski, M., Rytter, W.: The maximal number of runs in standard Sturmian words. Electr. J. Comb. 20(1), P13 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Breslauer, D.: Efficient string algorithmics. Ph.D. thesis, Columbia University (1992)

    Google Scholar 

  7. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: The maximal number of cubic runs in a word. J. Comput. Syst. Sci. 78(6), 1828–1836 (2012)

    Article  MathSciNet  Google Scholar 

  8. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74(5), 796–807 (2008)

    Article  MathSciNet  Google Scholar 

  9. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: algorithms and combinatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)

    Article  MathSciNet  Google Scholar 

  10. Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)

    Article  MathSciNet  Google Scholar 

  11. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a word from its runs structure. Theor. Comput. Sci. 521(13), 29–41 (2014)

    Article  MathSciNet  Google Scholar 

  12. Crochemore, M., et al.: Near-optimal computation of runs over general alphabet via non-crossing LCE queries. In: Proceedings of SPIRE, pp. 22–34 (2016)

    Google Scholar 

  13. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing \(\alpha \)-gapped repeats. In: Proceedings of LATA, pp. 245–255 (2016)

    Google Scholar 

  14. Crochemore, M., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: On the maximal sum of exponents of runs in a string. J. Discret. Algorithms 14, 29–36 (2012)

    Article  MathSciNet  Google Scholar 

  15. Crochemore, M., Mercas, R.: On the density of Lyndon roots in factors. Theor. Comput. Sci. 656, 234–240 (2016)

    Article  MathSciNet  Google Scholar 

  16. Deza, A., Franek, F.: A \(d\)-step approach to the maximum number of distinct squares and runs in strings. Discret. Appl. Math. 163(3), 268–274 (2014)

    Article  MathSciNet  Google Scholar 

  17. Deza, A., Franek, F.: Bannai et al. method proves the d-step conjecture for strings. Discret. Appl. Math. 217, 488–494 (2017)

    Article  MathSciNet  Google Scholar 

  18. Fischer, J., Holub, S., I, T., Lewenstein, M.: Beyond the runs theorem. In: Proceedings of SPIRE, pp. 277–286 (2015)

    Google Scholar 

  19. Franek, F., Islam, A.S.M.S., Rahman, M.S., Smyth, W.F.: Algorithms to compute the Lyndon array. In: Proceedings of PSC, pp. 172–184 (2016)

    Google Scholar 

  20. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs in a string. Int. J. Found. Comput. Sci. 1(195), 195–203 (2008)

    Article  MathSciNet  Google Scholar 

  21. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and optimal algorithms for all maximal \(\alpha \)-gapped repeats and palindromes - finding all maximal \(\alpha \)-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gawrychowski, P., Kociumaka, T., Rytter, W., Walen, T.: Faster longest common extension queries in strings over general alphabets. In: Proceedings of CPM, pp. 5:1–5:13 (2016)

    Google Scholar 

  23. Giraud, M.: Not so many runs in strings. In: Proceedings of LATA, pp. 232–239 (2008)

    Google Scholar 

  24. Giraud, M.: Asymptotic behavior of the numbers of runs and microruns. Inf. Comput. 207(11), 1221–1228 (2009)

    Article  MathSciNet  Google Scholar 

  25. Holub, S.: Prefix frequency of lost positions. Theor. Comput. Sci. 684, 43–52 (2017)

    Article  MathSciNet  Google Scholar 

  26. I, T., Köppl, D.: Improved upper bounds on all maximal \(\alpha \)-gapped repeats and palindromes, arXiv:1802.10355 (2018)

  27. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)

    Article  MathSciNet  Google Scholar 

  28. Kolpakov, R., Kucherov, G., Ochem, P.: On maximal repetitions of arbitrary exponent. Inf. Process. Lett. 110(7), 252–256 (2010)

    Article  MathSciNet  Google Scholar 

  29. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. In: Proceedings of CPM, pp. 212–221 (2014)

    Google Scholar 

  30. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proceedings of FOCS, pp. 596–604 (1999)

    Google Scholar 

  31. Kosolobov, D.: Computing runs on a general alphabet. Inf. Process. Lett. 116(3), 241–244 (2016)

    Article  MathSciNet  Google Scholar 

  32. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)

    MATH  Google Scholar 

  33. Main, M.G.: Detecting leftmost maximal periodicities. Discret. Appl. Math. 25(1–2), 145–153 (1989)

    Article  MathSciNet  Google Scholar 

  34. Main, M.G., Lorentz, R.J.: An \({O}(n\log n)\) algorithm for finding all repetitions in a string. J. Algorithms 5(3), 422–432 (1984)

    Article  MathSciNet  Google Scholar 

  35. Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proceedings of PSC 2008, pp. 140–145 (2008)

    Google Scholar 

  36. Puglisi, S.J., Simpson, J.: The expected number of runs in a word. Australas. J. Comb. 42, 45–54 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theor. Comput. Sci. 401, 165–171 (2006)

    Article  MathSciNet  Google Scholar 

  38. Rytter, W.: The number of runs in a string: improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_14

    Chapter  Google Scholar 

  39. Simpson, J.: Modified Padovan words and the maximum number of runs in a word. Australas. J. Comb. 46, 129–145 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theor. Comput. Sci. 249(2), 343–355 (2000)

    Article  MathSciNet  Google Scholar 

  41. Smyth, W.F.: Computing regularities in strings: a survey. Eur. J. Comb. 34(1), 3–14 (2013)

    Article  MathSciNet  Google Scholar 

  42. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT. 23(3), 337–349 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro I .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

I, T. (2018). The Runs Theorem and Beyond. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98654-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98653-1

  • Online ISBN: 978-3-319-98654-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics