Abstract
Repetitions in a string are fundamental properties the string possesses, which have been extensively studied in word combinatorics and utilized in many efficient string processing algorithms. Particularly maximal repetitions, also known as runs, are useful for representing all the repetitions in the string. Since it was shown that the number of runs in a string of length n is upper bounded by O(n) [Kolpakov and Kucherov, FOCS, pp. 596–604, 1999], the following conjecture (known as the “runs” conjecture) have been attracting the attention of many researchers: The number of runs in a string of length n is upper bounded by n. This conjecture was recently solved affirmatively using a characterization based on Lyndon words [Bannai et al., SIAM J Comput, pp. 1501–1514, 2017]. The characterization not only gives a surprisingly simple proof to the 15-years open problem but also provides completely new insights on how repetitions are packed into a string. In this article, we will briefly review the runs theorem and some related topics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bannai, H., Giraud, M., Kusano, K., Matsubara, W., Shinohara, A., Simpson, J.: The number of runs in a ternary word. In: Proceedings of PSC, pp. 178–181 (2010)
Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “Runs” Theorem, arXiv:1406.0263v4 (2014)
Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Proceedings of SODA, pp. 562–571 (2015)
Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)
Baturo, P., Piatkowski, M., Rytter, W.: The maximal number of runs in standard Sturmian words. Electr. J. Comb. 20(1), P13 (2013)
Breslauer, D.: Efficient string algorithmics. Ph.D. thesis, Columbia University (1992)
Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: The maximal number of cubic runs in a word. J. Comput. Syst. Sci. 78(6), 1828–1836 (2012)
Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74(5), 796–807 (2008)
Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: algorithms and combinatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)
Crochemore, M., Ilie, L., Tinta, L.: The “runs” conjecture. Theor. Comput. Sci. 412(27), 2931–2941 (2011)
Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a word from its runs structure. Theor. Comput. Sci. 521(13), 29–41 (2014)
Crochemore, M., et al.: Near-optimal computation of runs over general alphabet via non-crossing LCE queries. In: Proceedings of SPIRE, pp. 22–34 (2016)
Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing \(\alpha \)-gapped repeats. In: Proceedings of LATA, pp. 245–255 (2016)
Crochemore, M., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: On the maximal sum of exponents of runs in a string. J. Discret. Algorithms 14, 29–36 (2012)
Crochemore, M., Mercas, R.: On the density of Lyndon roots in factors. Theor. Comput. Sci. 656, 234–240 (2016)
Deza, A., Franek, F.: A \(d\)-step approach to the maximum number of distinct squares and runs in strings. Discret. Appl. Math. 163(3), 268–274 (2014)
Deza, A., Franek, F.: Bannai et al. method proves the d-step conjecture for strings. Discret. Appl. Math. 217, 488–494 (2017)
Fischer, J., Holub, S., I, T., Lewenstein, M.: Beyond the runs theorem. In: Proceedings of SPIRE, pp. 277–286 (2015)
Franek, F., Islam, A.S.M.S., Rahman, M.S., Smyth, W.F.: Algorithms to compute the Lyndon array. In: Proceedings of PSC, pp. 172–184 (2016)
Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs in a string. Int. J. Found. Comput. Sci. 1(195), 195–203 (2008)
Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and optimal algorithms for all maximal \(\alpha \)-gapped repeats and palindromes - finding all maximal \(\alpha \)-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)
Gawrychowski, P., Kociumaka, T., Rytter, W., Walen, T.: Faster longest common extension queries in strings over general alphabets. In: Proceedings of CPM, pp. 5:1–5:13 (2016)
Giraud, M.: Not so many runs in strings. In: Proceedings of LATA, pp. 232–239 (2008)
Giraud, M.: Asymptotic behavior of the numbers of runs and microruns. Inf. Comput. 207(11), 1221–1228 (2009)
Holub, S.: Prefix frequency of lost positions. Theor. Comput. Sci. 684, 43–52 (2017)
I, T., Köppl, D.: Improved upper bounds on all maximal \(\alpha \)-gapped repeats and palindromes, arXiv:1802.10355 (2018)
Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)
Kolpakov, R., Kucherov, G., Ochem, P.: On maximal repetitions of arbitrary exponent. Inf. Process. Lett. 110(7), 252–256 (2010)
Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. In: Proceedings of CPM, pp. 212–221 (2014)
Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proceedings of FOCS, pp. 596–604 (1999)
Kosolobov, D.: Computing runs on a general alphabet. Inf. Process. Lett. 116(3), 241–244 (2016)
Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)
Main, M.G.: Detecting leftmost maximal periodicities. Discret. Appl. Math. 25(1–2), 145–153 (1989)
Main, M.G., Lorentz, R.J.: An \({O}(n\log n)\) algorithm for finding all repetitions in a string. J. Algorithms 5(3), 422–432 (1984)
Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proceedings of PSC 2008, pp. 140–145 (2008)
Puglisi, S.J., Simpson, J.: The expected number of runs in a word. Australas. J. Comb. 42, 45–54 (2008)
Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theor. Comput. Sci. 401, 165–171 (2006)
Rytter, W.: The number of runs in a string: improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_14
Simpson, J.: Modified Padovan words and the maximum number of runs in a word. Australas. J. Comb. 46, 129–145 (2010)
Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theor. Comput. Sci. 249(2), 343–355 (2000)
Smyth, W.F.: Computing regularities in strings: a survey. Eur. J. Comb. 34(1), 3–14 (2013)
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT. 23(3), 337–349 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
I, T. (2018). The Runs Theorem and Beyond. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-98654-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98653-1
Online ISBN: 978-3-319-98654-8
eBook Packages: Computer ScienceComputer Science (R0)