Skip to main content

Application of the Sensor Fusion for the System to Track Human Upper Limb Motion

  • Conference paper
  • First Online:
Multimedia and Network Information Systems (MISSI 2018)

Abstract

The paper presents the system to track and visualize the human movement. The system is equipped with inertial measurement units, consisting triaxial accelerometers, gyroscopes and magnetometers. The estimates of the relative position and orientation in the proposed system are obtained using the data from the sensors and a biomechanical model. To estimate the orientation of the body segments we applied Madgewick algorithm. The biomechanical model applied in our studies is based on twists and exponential maps. As a proof-of-concept, we applied our approach to an upper limb to illustrate its ability to track human motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Malek, K., Arora, J.: Human Motion Simulation: Predictive Dynamics. Academic Press (2013)

    Google Scholar 

  2. Ahmadi, A., Rowlands, D., James, D.: Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Technol. 2(3–4), 129–136 (2009)

    Article  Google Scholar 

  3. Au, A., Kirsch, R.: EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals. IEEE Trans. Rehabil. Eng. 8(4), 471–480 (2000)

    Article  Google Scholar 

  4. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Pervasive Computing, pp. 1–17. Springer (2004)

    Google Scholar 

  5. Craig, J.: Wprowadzenie do robotyki: mechanika i sterowanie, pp. 35–128. Wydawnictwa Naukowo-Techniczne (1995)

    Google Scholar 

  6. Denavit, J.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech, 215–221 (1955)

    Google Scholar 

  7. Fougner, A., Scheme, E., Chan, A., Englehart, K., Stavdahl, O.: A multi-modal approach for hand motion classification using surface emg and accelerometers. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 4247–4250. IEEE (2011)

    Google Scholar 

  8. Guraliuc, A., Barsocchi, P., Potortì, F., Nepa, P.: Limb movements classification using wearable wireless transceivers. IEEE Trans. Inf Technol. Biomed. 15(3), 474–480 (2011)

    Article  Google Scholar 

  9. Jaitner, T., Gawin, W.: A mobile measure device for the analysis of highly dynamic movement techniques. Procedia Eng. 2(2), 3005–3010 (2010)

    Article  Google Scholar 

  10. Khaleghi, B., Khamis, A., Karray, F.: Multisensor data fusion. In: Multisensor Data Fusion: From Algorithms and Architectural Design to Applications, p. 15 (2015)

    Google Scholar 

  11. Llinas, J., Hall, D., Liggins, M.: Handbook of Multisensor Data Fusion: Theory and Practice. CRC Press, Boca Raton (2009)

    Google Scholar 

  12. Madgwick, S.: An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK) (2010)

    Google Scholar 

  13. Madgwick, S., Harrison, A., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–7. IEEE (2011)

    Google Scholar 

  14. Madgwick, S., Vaidyanathan, R., Harrison, A.: An efficient orientation filter for inertial measurement units (IMUS) and magnetic angular rate and gravity (MARG) sensor arrays. Technical report, Department of Mechanical Engineering, April 2010

    Google Scholar 

  15. Mahony, R., Hamel, T., Pflimlin, J.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)

    Article  MathSciNet  Google Scholar 

  16. Murray, R., Li, Z., Sastry, S., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  17. Parent, R.: Animacja komputerowa: algorytmy i techniki, pp. 40–71, 181–209, 459–505. Wydawnictwo Naukowe PWN (2012)

    Google Scholar 

  18. Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. Technical report, Xsens Motion Technologies BV (2009)

    Google Scholar 

  19. Roetenberg, D., Luinge, H., Baten, C., Veltink, P.: Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 395–405 (2005)

    Article  Google Scholar 

  20. Shaeffer, D.: Mems inertial sensors: a tutorial overview. IEEE Commun. Mag. 51(4), 100–109 (2013)

    Article  Google Scholar 

  21. Shimmer: Shimmer, October 2015. http://www.shimmersensing.com

  22. Tchoń, K., Mazur, A., Hossa, R., Duleba, I., Muszyński, R.: Manipulatory i roboty mobilne. Modele, planowanie ruchu, sterowanie, pp. 23–90. Akademicka Oficyna Wydawnicza PLJ (2000)

    Google Scholar 

  23. Xi, C.: Human motion analysis with wearable inertial sensors. Ph.D. thesis, University of Tennessee, Knoxville, August 2013

    Google Scholar 

  24. Zhang, Z., Wong, W.C., Wu, J.: Wearable sensors for 3D upper limb motion modeling and ubiquitous estimation. J. Control Theory Appl. 9(1), 10–17 (2011)

    Article  MathSciNet  Google Scholar 

  25. Zhou, H., Hu, H., Harris, N., Hammerton, J.: Applications of wearable inertial sensors in estimation of upper limb movements. Biomed. Signal Process. Control 1(1), 22–32 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Brzostowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leśniczek, Ł., Brzostowski, K. (2019). Application of the Sensor Fusion for the System to Track Human Upper Limb Motion. In: Choroś, K., Kopel, M., Kukla, E., Siemiński, A. (eds) Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-319-98678-4_7

Download citation

Publish with us

Policies and ethics