Skip to main content

Methods of Creating Knowledge Graph by Linking Biological Databases

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 12th International Conference (PACBB2018 2018)

Abstract

A large number of biological databases are currently in use by scientists. These databases employ different formats, many of which can be converted into resource description format (RDF), which can be subsequently queried using semantic web methods. These databases have “inter” and “intra” database relationships. RDF has an inherent graph structure that facilitates exploration of connections between data via graphical representations known as knowledge graphs. In this paper, we survey the existing methods that are in use to link biological databases and evaluate the effectiveness with which the available approaches can predict unknown links between entities in databases as a means of improving knowledge graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckett, D., McBride, B.: RDF/XML Syntax Specification. W3C Work, pp. 1–56 (2003)

    Google Scholar 

  2. Belleau, F., et al.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)

    Article  Google Scholar 

  3. Momtchev, V., Peychev D., Primov, T., Georgiev, G.: Expanding the pathway and interaction knowledge in linked life data. In: Proceedings of International Semantic Web Challenge (2009)

    Google Scholar 

  4. Samwald, M., et al.: Linked Open drug data for pharmaceutical research and development. J. Cheminfo. 3 (2011). https://doi.org/10.1186/1758-2946-3-19

  5. KaBOB: ontology-based semantic integration of biomedical databases. BMC Bioinform. 16, 126 (2015)

    Google Scholar 

  6. Ruttenberg, A., et al.: Life sciences on the semantic web: the neurocommons and beyond. Brief. Bioinfo. 10, 193–204 (2009)

    Article  Google Scholar 

  7. Lauw, H., et al.: Homophily in the digital world: a live journal case study. IEEE Internet Comput. 14, 15–23 (2010)

    Article  Google Scholar 

  8. Katz, L., et al.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  Google Scholar 

  9. Acar, E., et al.: Link prediction on evolving data using matrix and tensor factorizations. In: 2009 IEEE International Conference on Data Mining Workshops, pp. 262–269 (2009)

    Google Scholar 

  10. Jaccard, P., et al.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. del la Société Vaudoise des Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  11. Newman, M.E.J., et al.: Clustering and preferential attachment in growing networks. Phys. Rev. 64, 25102 (2001)

    Google Scholar 

  12. Liu, W., Lu, L.: Link prediction based on local random walk. EPL (Europhysics Lett.) 89, 58007 (2010)

    Article  Google Scholar 

  13. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of Twelfth Annual ACM International Conference Information and Knowledge Management, pp. 556–559 (2003)

    Google Scholar 

  14. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine BT, Computer Networks and ISDN Systems. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  15. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35, 283–319 (1970)

    Article  Google Scholar 

  16. Harshman, R.: Foundations of the PARAFAC procedure: models and conditions for an ‘explanatory’ multimodal factor analysis. UCLA Work. Pap. Phonetics 16, 1–84 (1970)

    Google Scholar 

  17. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Contributions to Mathematical Psychology, pp. 110–119 (1964)

    Google Scholar 

  18. Tucker, L.R.: PARAFAC2: mathematical and technical notes. UCLA Work. Pap. Phonetics 22, 30–44 (1972)

    Google Scholar 

  19. Hong, S.J., Harshman, R.: Shifted factor analysis, Part III: N-way generalization and application. J. Chemom. 17, 389–399 (2003)

    Article  Google Scholar 

  20. Bro, R., et al.: Modeling multi-way data with linearly dependent loadings. J. Chemom. 23, 324–340 (2009)

    Article  Google Scholar 

  21. Harshman, R.A., et al.: Shifted factor analysis? Part I: models and properties. J. Chemom. 17, 363–378 (2003)

    Article  Google Scholar 

  22. Nickel, M., et al.: Factorizing YAGO. In: Proceedings of the 21st international conference on World Wide Web - WWW 2012, p. 271 (2012)

    Google Scholar 

  23. Nickel, M., Tresp, V.: Tensor factorization for multi-relational learning. Lecture Notes in Computer Science, pp. 617–621 (2013)

    Google Scholar 

  24. Nickel, M., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 11–33 (2016)

    Article  Google Scholar 

  25. Jiang, X., et al.: Link prediction in multi-relational graphs using additive models. In: International Workshop on Semantic Technologies meet Recommender Systems and Big Data at the ISWC, pp. 1–12 (2012)

    Google Scholar 

  26. Riedel, S., et al.: Relation extraction with matrix factorization and universal schemas. In: Proceedings 2013 Conference of the North American Chapter of the Association Computational Linguistics Human Language Technologies, pp. 74–84 (2013)

    Google Scholar 

  27. Huang, Y., et al.: A scalable approach for statistical learning in semantic graphs. Semantic Web 5, 5–22 (2014)

    Google Scholar 

  28. Tresp, V., et al.: Materializing and querying learned knowledge. In: CEUR Workshop Proceedings (2009)

    Google Scholar 

  29. Richardson, M., Domingos, P.: Markov logic networks. In: Machine Learning, pp. 107–136 (2009)

    Google Scholar 

  30. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006). ISBN 0-387-31073-8

    Google Scholar 

  31. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, pp. 809–816 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazar Zaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaki, N., Tennakoon, C., Al Ashwal, H., Al Jaberi, A., Al Ameri, A. (2019). Methods of Creating Knowledge Graph by Linking Biological Databases. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., González, P. (eds) Practical Applications of Computational Biology and Bioinformatics, 12th International Conference. PACBB2018 2018. Advances in Intelligent Systems and Computing, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-98702-6_7

Download citation

Publish with us

Policies and ethics