Skip to main content

BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11029))

Included in the following conference series:

Abstract

Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for the citizens. However, effective data-centric applications demand data management techniques able to process a large volume of data which may include sensitive data, e.g., financial transactions, medical procedures, or personal data. Managing sensitive data requires the enforcement of privacy and access control regulations, particularly, during the execution of queries against datasets that include sensitive and non-sensitive data. In this paper, we tackle the problem of enforcing privacy regulations during query processing, and propose BOUNCER, a privacy-aware query engine over federations of RDF datasets. BOUNCER allows for the description of RDF datasets in terms of RDF molecule templates, i.e., abstract descriptions of the properties of the entities in an RDF dataset and their privacy regulations. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over RDF datasets that not only contain the relevant entities to answer a query, but that are also regulated by policies that allow for accessing these relevant entities. We empirically evaluate the effectiveness of the BOUNCER privacy-aware techniques over state-of-the-art benchmarks of RDF datasets. The observed results suggest that BOUNCER can effectively enforce access control regulations at different granularity without impacting the performance of query processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Predicates \(project(Di, p_{ij}, C_{ij})\), \(join\_fed(Di, p_{ij}, C_{ij})\) and \(join\_local(Di, p_{ij}, C_{ij})\) are part of T for all properties in triple patterns in Q that can be answered by Di.

  2. 2.

    For readability, \(\text {UNION}_{di\in SD+i}\) represents SPARQL UNION operator.

  3. 3.

    SERVICE corresponds to the SPARQL SERVICE clause.

  4. 4.

    DJOIN- is a dependent JOIN [14].

References

  1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_2

    Chapter  Google Scholar 

  2. Amini, M., Jalili, R.: Multi-level authorisation model and framework for distributed semantic-aware environments. IET Inf. Secur. 4(4), 301–321 (2010)

    Article  Google Scholar 

  3. Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., Rogers, J.: SMCQL: secure querying for federated databases. Proc. VLDB Endow. 10(6), 673–684 (2017)

    Article  Google Scholar 

  4. Bonatti, P.A., Olmedilla, D.: Rule-based policy representation and reasoning for the semantic web. In: Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 240–268. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74615-7_4

    Chapter  Google Scholar 

  5. Costabello, L., Villata, S., Gandon, F.: Context-aware access control for RDF graph stores. In: ECAI-20th European Conference on Artificial Intelligence (2012)

    Google Scholar 

  6. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Authorization enforcement in distributed query evaluation. JCS 19(4), 751–794 (2011)

    Article  Google Scholar 

  7. Endris, K.M., Galkin, M., Lytra, I., Mami, M.N., Vidal, M.-E., Auer, S.: MULDER: querying the linked data web by bridging RDF molecule templates. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64468-4_1

    Chapter  Google Scholar 

  8. Khan, Y., et al.: SAFE: SPARQL federation over RDF data cubes with access control. J. Biomed. Semant. 8(1) (2017)

    Google Scholar 

  9. Kirrane, S., Abdelrahman, A., Mileo, A., Decker, S.: Secure manipulation of linked data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 248–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_16

    Chapter  Google Scholar 

  10. Kost, M., Freytag, J.-C.: SWRL-based access policies for linked data (2010)

    Google Scholar 

  11. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_38

    Chapter  Google Scholar 

  12. Unbehauen, J., Frommhold, M., Martin, M.: Enforcing scalable authorization on SPARQL queries. In: SEMANTiCS (Posters, Demos, SuCCESS) (2016)

    Google Scholar 

  13. Vidal, M.-E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., Polleres, A.: Efficiently joining group patterns in SPARQL queries. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_16

    Chapter  Google Scholar 

  14. Zadorozhny, V., Raschid, L., Vidal, M., Urhan, T., Bright, L.: Efficient evaluation of queries in a mediator for websources. In: ACM SIGMOD (2002)

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the EU H2020 RIA under the Marie Skłodowska-Curie grant agreement No. 642795 (WDAqua) and EU H2020 Programme for the project No. 727658 (IASIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemele M. Endris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Endris, K.M., Almhithawi, Z., Lytra, I., Vidal, ME., Auer, S. (2018). BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98809-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98808-5

  • Online ISBN: 978-3-319-98809-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics