Abstract
Minimising information loss on anonymised high dimensional data is important for data utility. Syntactic data anonymisation algorithms address this issue by generating datasets that are neither use-case specific nor dependent on runtime specifications. This results in anonymised datasets that can be re-used in different scenarios which is performance efficient. However, syntactic data anonymisation algorithms incur high information loss on high dimensional data, making the data unusable for analytics. In this paper, we propose an optimised exact quasi-identifier identification scheme, based on the notion of k-anonymity, to generate anonymised high dimensional datasets efficiently, and with low information loss. The optimised exact quasi-identifier identification scheme works by identifying and eliminating maximal partial unique column combination (mpUCC) attributes that endanger anonymity. By using in-memory processing to handle the attribute selection procedure, we significantly reduce the processing time required. We evaluated the effectiveness of our proposed approach with an enriched dataset drawn from multiple real-world data sources, and augmented with synthetic values generated in close alignment with the real-world data distributions. Our results indicate that in-memory processing drops attribute selection time for the mpUCC candidates from 400s to 100s, while significantly reducing information loss. In addition, we achieve a time complexity speed-up of \(O(3^{n/3})\approx O(1.4422^{n})\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
References
Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005 (2005)
Barbaro, M., Zeller, T., Hansell, S.: A face is exposed for AOL searcher no. 4417749. New York Times 9(2008), 8 (2006). https://www.nytimes.com/2006/08/09/technology/09aol.html
Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 217–228. IEEE (2005)
Bhaskar, R., Laxman, S., Smith, A., Thakurta, A.: Discovering frequent patterns in sensitive data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 503–512. ACM (2010)
Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of dependency detection in relational databases. In: LIPIcs-Leibniz International Proceedings in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Bonomi, L., Xiong, L.: Mining frequent patterns with differential privacy. Proc. VLDB Endow. 6(12), 1422–1427 (2013)
De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)
Dondi, R., Mauri, G., Zoppis, I.: On the complexity of the l-diversity problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 266–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_26
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Färber, F., et al.: The SAP HANA database-an architecture overview. IEEE Data Eng. Bull. 35(1), 28–33 (2012)
Fienberg, S.E., Jin, J.: Privacy-preserving data sharing in high dimensional regression and classification settings. J. Priv. Confid. 4(1), 221–243 (2012)
Fredj, F.B., Lammari, N., Comyn-Wattiau, I.: Abstracting anonymization techniques: a prerequisite for selecting a generalization algorithm. Procedia Comput. Sci. 60, 206–215 (2015)
Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. SIAM J. Comput. 41(6), 1673–1693 (2012)
Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM (JACM) 25(1), 116–133 (1978)
Islam, M.Z., Brankovic, L.: Privacy preserving data mining: a noise addition framework using a novel clustering technique. Knowl.-Based Syst. 24(8), 1214–1223 (2011)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of the 2011 ACM SIGMOD, SIGMOD 2011, pp. 193–204. ACM (2011)
Kohlmayer, F., Prasser, F., Eckert, C., Kuhn, K.A.: A flexible approach to distributed data anonymization. J. Biomed. Inform. 50, 62–76 (2014)
Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in differential privacy (2015)
Lee, J., et al.: High-performance transaction processing in SAP HANA. IEEE Data Eng. Bull. 36(2), 28–33 (2013)
Li, C., Miklau, G., Hay, M., McGregor, A., Rastogi, V.: The matrix mechanism: optimizing linear counting queries under differential privacy. VLDB J. 24(6), 757–781 (2015)
Li, N., Li, T., Venkatasubramanian, S.: T-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd ICDE, pp. 106–115, April 2007
Liang, H., Yuan, H.: On the complexity of t-closeness anonymization and related problems. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013. LNCS, vol. 7825, pp. 331–345. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37487-6_26
Liu, F.: Generalized Gaussian mechanism for differential privacy (2016)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM TKDD 1(1), 3 (2007)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th IEEE Symposium Foundations of Computer Science, FOCS 2007 (2007)
Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: SWAT (FOCS), pp. 125–129 (1972)
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 223–228. ACM (2004)
Mohammed, N., Fung, B., Hung, P.C., Lee, C.K.: Centralized and distributed anonymization for high-dimensional healthcare data. ACM TKDD 4(4), 18 (2010)
Papenbrock, T., Naumann, F.: A hybrid approach for efficient unique column combination discovery. Proc. der Fachtagung Business, Technologie und Web (2017)
Plattner, H., et al.: A Course in In-Memory Data Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-55270-0
Polonetsky, J., Tene, O., Finch, K.: Shades of gray: seeing the full spectrum of practical data de-identification (2016)
Rubinstein, I., Hartzog, W.: Anonymization and risk (2015)
Rzhetsky, A., Wajngurt, D., Park, N., Zheng, T.: Probing genetic overlap among complex human phenotypes. Proc. Nat. Acad. Sci. 104(28), 11694–11699 (2007)
Suthram, S., Dudley, J.T., Chiang, A.P., Chen, R., Hastie, T.J., Butte, A.J.: Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput. Biol. 6(2), 1–10 (2010)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 571–588 (2002)
Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)
Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. Proc. VLDB Endow. 1(1), 115–125 (2008)
Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 206–215. ACM (2003)
Vaidya, J., Kantarcıoğlu, M., Clifton, C.: Privacy-preserving Naive Bayes classification. VLDB J.—Int. J. Very Large Data Bases 17(4), 879–898 (2008)
Vessenes, P., Seidensticker, R.: System and method for analyzing transactions in a distributed ledger. US Patent 9,298,806, 29 March 2016
Wernke, M., Skvortsov, P., Dürr, F., Rothermel, K.: A classification of location privacy attacks and approaches. Pers. Ubiquit. Comput. 18(1), 163–175 (2014)
Wimmer, H., Powell, L.: A comparison of the effects of k-anonymity on machine learning algorithms. In: Proceedings of the Conference for Information Systems Applied Research ISSN, vol. 2167, p. 1508 (2014)
Zhang, B., Dave, V., Mohammed, N., Hasan, M.A.: Feature selection for classification under anonymity constraint. arXiv preprint arXiv:1512.07158 (2015)
Zhang, X., Yang, L.T., Liu, C., Chen, J.: A scalable two-phase top-down specialization approach for data anonymization using mapreduce on cloud. IEEE Trans. Parallel Distrib. Syst. 25(2), 363–373 (2014)
Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5, 4212 (2014)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Podlesny, N.J., Kayem, A.V.D.M., von Schorlemer, S., Uflacker, M. (2018). Minimising Information Loss on Anonymised High Dimensional Data with Greedy In-Memory Processing. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-98809-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98808-5
Online ISBN: 978-3-319-98809-2
eBook Packages: Computer ScienceComputer Science (R0)