Skip to main content

Early Detection of Depression Based on Linguistic Metadata Augmented Classifiers Revisited

Best of the eRisk Lab Submission

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2018)

Abstract

Early detection of depression based on written texts has become an important research area due to the rise of social media platforms and because many affected individuals are still not treated. During the eRisk task for early detection of depression at CLEF 2017, FHDO Biomedical Computer Science Group (BCSG) submitted results based on five text classification models. This paper builds upon this work to examine the task and especially the \(ERDE_o\) metric in further detail and to analyze how an additional type of metadata features can help in this task. Finally, different prediction thresholds and ensembles of the developed models are utilized to investigate the possible improvements, and a newly proposed alternative early detection metric is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon, accessed on 2018-04-12.

  2. 2.

    https://www.nltk.org/, accessed on 2018-04-12.

References

  1. Al-Mosaiwi, M., Johnstone, T.: In an absolute state: elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. (2018, prepublished). https://doi.org/10.1177/2167702617747074

  2. Alonso, J., et al.: Population level of unmet need for mental healthcare in Europe. Br. J. Psychiatr. 190(4), 299–306 (2007)

    Article  Google Scholar 

  3. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta, vol. 10 (2010)

    Google Scholar 

  4. Beck, A.T., Alford, B.A.: Depression: Causes and Treatment, 2nd edn. University of Pennsylvania Press, Philadelphia (2009)

    Google Scholar 

  5. Berger, M., Wagner, T.H., Baker, L.C.: Internet use and stigmatized illness. Soc. Sci. Med. 61(8), 1821–1827 (2005)

    Article  Google Scholar 

  6. Bucci, W., Freedman, N.: The language of depression. Bull. Menninger Clin. 45(4), 334–358 (1981)

    Google Scholar 

  7. Coppersmith, G., Dredze, M., Harman, C., Hollingshead, K., Mitchell, M.: CLPsych 2015 shared task: depression and PTSD on Twitter. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality (CLPsych 2015), Denver, Colorado, USA, pp. 31–39 (2015)

    Google Scholar 

  8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Gowen, K., Deschaine, M., Gruttadara, D., Markey, D.: Young adults with mental health conditions and social networking websites: seeking tools to build community. Psychiatr. Rehabil. J. 35(3), 245–250 (2012)

    Article  Google Scholar 

  11. Guntuku, S.C., Yaden, D.B., Kern, M.L., Ungar, L.H., Eichstaedt, J.C.: Detecting depression and mental illness on social media: an integrative review. Curr. Opin. Behav. Sci. 18, 43–49 (2017)

    Article  Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Hutto, C.J., Gilbert, E.E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM 2014), Ann Arbor, Michigan, USA, pp. 216–225 (2014)

    Google Scholar 

  14. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning (ICML 2014), Beijing, China, vol. 14, pp. 1188–1196 (2014)

    Google Scholar 

  15. Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction: 7th International Conference of the CLEF Association, CLEF 2016, Évora, Portugal, pp. 28–39 (2016)

    Google Scholar 

  16. Losada, D.E., Crestani, F., Parapar, J.: eRISK 2017: CLEF lab on early risk prediction on the internet: experimental foundations. In: Proceedings Conference and Labs of the Evaluation Forum CLEF 2017, Dublin, Ireland (2017)

    Google Scholar 

  17. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  18. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

    Article  MathSciNet  Google Scholar 

  19. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  20. Rude, S., Gortner, E.-M., Pennebaker, J.: Language use of depressed and depression-vulnerable college students. Cogn. Emot. 18(8), 1121–1133 (2004)

    Article  Google Scholar 

  21. Sadeque, F., Xu, D., Bethard, S.: Measuring the latency of depression detection in social media. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM 2018), Los Angeles, California, USA, pp. 495–503 (2018)

    Google Scholar 

  22. Shen, J.H., Rudzicz, F.: Detecting anxiety through reddit. In: Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology. From Linguistic Signal to Clinical Reality (CLPsych 2017), Vancouver, Canada, pp. 58–65 (2017)

    Google Scholar 

  23. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)

    Article  Google Scholar 

  24. Trotzek, M., Koitka, S., Friedrich, C.M.: Linguistic metadata augmented classifiers at the CLEF 2017 task for early detection of depression. In: Working Notes Conference and Labs of the Evaluation Forum CLEF 2017, Dublin, Ireland (2017). http://ceur-ws.org/Vol-1866/paper_54.pdf. Accessed 29 Mar 2018

  25. Trotzek, M., Koitka, S., Friedrich, C.M.: Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. arXiv preprint arXiv:1804.07000 [cs.CL] (2018)

  26. Villegas, M.P., Funez, D.G., Ucelay, M.J.G., Cagnina, L.C., Errecalde, M.L.: LIDIC - UNSL’s participation at eRisk 2017: pilot task on early detection of depression. In: Working Notes Conference and Labs of the Evaluation Forum CLEF 2017, Dublin, Ireland (2017). http://ceur-ws.org/Vol-1866/paper_107.pdf. Accessed 29 Mar 2018

  27. Weintraub, W.: Verbal Behavior: Adaptation and Psychopathology. Springer, New York (1981)

    Google Scholar 

  28. World Health Organization: Depression and Other Common Mental Disorders: Global Health Estimates (2017)

    Google Scholar 

Download references

Acknowledgment

The work of Sven Koitka was partially funded by a PhD grant from University of Applied Sciences and Arts Dortmund, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcel Trotzek , Sven Koitka or Christoph M. Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trotzek, M., Koitka, S., Friedrich, C.M. (2018). Early Detection of Depression Based on Linguistic Metadata Augmented Classifiers Revisited. In: Bellot, P., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2018. Lecture Notes in Computer Science(), vol 11018. Springer, Cham. https://doi.org/10.1007/978-3-319-98932-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98932-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98931-0

  • Online ISBN: 978-3-319-98932-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics