Abstract
In this paper we consider the exact solution of the closest string problem (CSP). In general, exact algorithms for an NP-hard problem are either branch and bound procedures or dynamic programs. With respect to branch and bound, we give a new Integer Linear Programming formulation, improving over the standard one, and also suggest some combinatorial lower bounds for a possible non-ILP branch and bound approach. Furthermore, we describe the first dynamic programming procedure for the CSP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Dor, A., Lancia, G., Ravi, R., Perone, J.: Banishing bias from consensus sequences. In: Apostolico, A., Hein, J. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63220-4_63
Chen, Z., Wang, L.: Fast exact algorithms for the closest string and substring problems with application to the planted \((L, d)\)-Motif model. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1400–1410 (2011)
Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for closest string and related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_38
Kelsey, T., Kotthoff, L.: Exact closest string as a constraint satisfaction problem. Procedia Comput. Sci. 4, 1062–1071 (2011)
Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185, 41–55 (2003)
Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 (2002)
Ma, B.: A polynomial time approximation scheme for the closest substring problem. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 99–107. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_10
Mauch, H., Melzer, M.J., Hu, J.S.: Genetic algorithm approach for the closest string problem. In: Proceedings of the 2003 IEEE Bioinformatics Conference on Computational Systems Bioinformatics. CSB2003, pp. 560–561 (2003)
Meneses, C., Lu, Z., Oliveira, C., Pardalos, P.: Optimal solutions for the closest-string problem via integer programming. INFORMS J. Comput. 16(4), 419–429 (2004)
Sim, J.S., Park, K.: The consensus string problem for a metric is NP-complete. In: Proceedings of the Annual Australasian Workshop on Combinatorial Algorithms (AWOCA), pp. 107–113 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Dalpasso, M., Lancia, G. (2018). New Modeling Ideas for the Exact Solution of the Closest String Problem. In: Elloumi, M., et al. Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information Science, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-319-99133-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-99133-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99132-0
Online ISBN: 978-3-319-99133-7
eBook Packages: Computer ScienceComputer Science (R0)