Skip to main content

New Modeling Ideas for the Exact Solution of the Closest String Problem

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2018)

Abstract

In this paper we consider the exact solution of the closest string problem (CSP). In general, exact algorithms for an NP-hard problem are either branch and bound procedures or dynamic programs. With respect to branch and bound, we give a new Integer Linear Programming formulation, improving over the standard one, and also suggest some combinatorial lower bounds for a possible non-ILP branch and bound approach. Furthermore, we describe the first dynamic programming procedure for the CSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Dor, A., Lancia, G., Ravi, R., Perone, J.: Banishing bias from consensus sequences. In: Apostolico, A., Hein, J. (eds.) CPM 1997. LNCS, vol. 1264, pp. 247–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63220-4_63

    Chapter  Google Scholar 

  2. Chen, Z., Wang, L.: Fast exact algorithms for the closest string and substring problems with application to the planted \((L, d)\)-Motif model. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1400–1410 (2011)

    Article  Google Scholar 

  3. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for closest string and related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_38

    Chapter  MATH  Google Scholar 

  4. Kelsey, T., Kotthoff, L.: Exact closest string as a constraint satisfaction problem. Procedia Comput. Sci. 4, 1062–1071 (2011)

    Article  Google Scholar 

  5. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185, 41–55 (2003)

    Article  MathSciNet  Google Scholar 

  6. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ma, B.: A polynomial time approximation scheme for the closest substring problem. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 99–107. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_10

    Chapter  Google Scholar 

  8. Mauch, H., Melzer, M.J., Hu, J.S.: Genetic algorithm approach for the closest string problem. In: Proceedings of the 2003 IEEE Bioinformatics Conference on Computational Systems Bioinformatics. CSB2003, pp. 560–561 (2003)

    Google Scholar 

  9. Meneses, C., Lu, Z., Oliveira, C., Pardalos, P.: Optimal solutions for the closest-string problem via integer programming. INFORMS J. Comput. 16(4), 419–429 (2004)

    Article  MathSciNet  Google Scholar 

  10. Sim, J.S., Park, K.: The consensus string problem for a metric is NP-complete. In: Proceedings of the Annual Australasian Workshop on Combinatorial Algorithms (AWOCA), pp. 107–113 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lancia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalpasso, M., Lancia, G. (2018). New Modeling Ideas for the Exact Solution of the Closest String Problem. In: Elloumi, M., et al. Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information Science, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-319-99133-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99133-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99132-0

  • Online ISBN: 978-3-319-99133-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics