Skip to main content

Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11024))

Included in the following conference series:

Abstract

Uppaal SMC is a state-of-the-art tool for modelling and statistical analysis of hybrid systems, allowing the user to directly model the expected battery consumption in battery-operated devices. The tool employs a numerical approach for solving differential equations describing the continuous evolution of a hybrid system, however, the addition of a battery model significantly slows down the simulation and decreases the precision of the analysis. Moreover, Uppaal SMC is not optimized for obtaining simulations with durations of realistic battery lifetimes. We propose an analytical approach to address the performance and precision issues of battery modelling, and a trace extrapolation technique for extending the prediction horizon of Uppaal SMC. Our approach shows a performance gain of up to 80% on two industrial wireless sensor protocol models, while improving the precision with up to 55%. As a proof of concept, we develop a tool prototype where we apply our extrapolation technique for predicting battery lifetimes and show that the expected battery lifetime for several months of device operation can be computed within a reasonable computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.: Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 559–576. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_34

    Chapter  Google Scholar 

  2. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: ACM SIGPLAN Notices, vol. 49, pp. 595–606. ACM (2014)

    Google Scholar 

  3. Chiasserini, C.F., Rao, R.R.: Energy efficient battery management. IEEE J. Sel. Areas Commun. 19(7), 1235–1245 (2001)

    Article  Google Scholar 

  4. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

    Article  Google Scholar 

  5. David, A., et al.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_7

    Chapter  Google Scholar 

  6. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)

    Article  Google Scholar 

  7. Eder, K., Gallagher, J.: Energy-aware software engineering. In: ICT - Energy Concepts for Energy Efficiency and Sustainability, pp. 103–127. InTechOpen (2017)

    Google Scholar 

  8. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for wireless sensor networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5_14

    Chapter  Google Scholar 

  9. Gold, S.: A PSPICE macromodel for lithium-ion batteries. In: Twelfth Annual Battery Conference on Applications and Advances, pp. 215–222. IEEE (1997)

    Google Scholar 

  10. Haemmerlé, R., López-García, P., Liqat, U., Klemen, M., Gallagher, J.P., Hermenegildo, M.V.: A transformational approach to parametric accumulated-cost static profiling. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3_11

    Chapter  Google Scholar 

  11. Heni, M., Bouallegue, A., Bouallegue, R.: Energy consumption model in ad hoc mobile network. Int. J. Comput. Netw. Commun. 4(3), 207–217 (2012)

    Google Scholar 

  12. Jaeger, M.G.B.: Wireless network medium access control protocol. https://www.google.com/patents/US20120120871. US Patent App. 12/945,989 (2012)

  13. Jongerden, M., Haverkort, B., Bohnenkamp, H., Katoen, J.P.: Maximizing system lifetime by battery scheduling. In: Proceedings of 2009 IEEE/IFIP International Conference on Dependable Systems & Networks, pp. 63–72. IEEE (2009)

    Google Scholar 

  14. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Software 3(6), 445–457 (2009)

    Article  Google Scholar 

  15. Jongerden, M.R., Haverkort, B.R.: Battery aging, battery charging and the kinetic battery model: a first exploration. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 88–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_6

    Chapter  Google Scholar 

  16. Jørgensen, K.H., Christoffersen, N.B., Petersen, R.D., Gjøderum, T.H.: VisuAAL - an application for visualizing realistic mesh network protocol behavior through Uppaal simulations, Master Thesis. Aalborg University, Department of Computer Science (2017)

    Google Scholar 

  17. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Solar Energy 50(5), 399–405 (1993)

    Article  Google Scholar 

  18. Panigrahi, D., Dey, S., Rao, R., Lahiri, K., Chiasserini, C., Raghunathan, A.: Battery life estimation of mobile embedded systems. In: Fourteenth International Conference on VLSI Design 2001, pp. 57–63. IEEE (2001)

    Google Scholar 

  19. Rakhmatov, D.N., Vrudhula, S.B.: An analytical high-level battery model for use in energy management of portable electronic systems. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, pp. 488–493. IEEE (2001)

    Google Scholar 

  20. Rodrigues, L.M., Montez, C., Moraes, R., Portugal, P., Vasques, F.: A temperature-dependent battery model for wireless sensor networks. Sensors 17(2), 422 (2017)

    Google Scholar 

  21. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, New York (2013). https://doi.org/10.1007/978-0-387-21738-3

  22. TADIRAN SL-750 Data Sheet. https://tadiranbatteries.de/pdf/lithium-thionyl-chloride-batteries/SL-750.pdf. Accessed 12 June 2018

  23. Wognsen, E.R., Haverkort, B.R., Jongerden, M., Hansen, R.R., Larsen, K.G.: A score function for optimizing the cycle-life of battery-powered embedded systems. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 305–320. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22975-1_20

    Chapter  MATH  Google Scholar 

  24. Xue, J., Yuan, Z., Zhang, Q.: Traffic load-aware power-saving mechanism for IEEE 802.16 E sleep mode. In: Proceedings of 4th International Conference on Wireless Communications, Networking and Mobile Computing 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

Download references

Acknowledgements

We thank Kevin H. Jørgensen, Niels B. Christoffersen, Rasmus D. Petersen and Tim H. Gjøderum for their help with integrating our tool with VisuAAL and numerous discussions about the annotation of battery modes in Uppaal SMC models of the two wireless network protocols. We thank Neocortec for allowing us to use their MAC protocol in our experiments and Thomas Steen Halkier for discussions about the battery consumption patterns and for providing us with current consumption graphs. The work was funded by the center IDEA4CPS, the Innovation Fund Denmark center DiCyPS and ERC Advanced Grant LASSO. The last author is partially affiliated with FI MU, Brno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, D., Larsen, K.G., Schupp, S., Srba, J. (2018). Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99154-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99153-5

  • Online ISBN: 978-3-319-99154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics