Abstract
The analysis of parametrised systems is a growing field in verification, but the analysis of parametrised probabilistic systems is still in its infancy. This is partly because it is much harder: while there are beautiful cut-off results for non-stochastic systems that allow to focus only on small instances, there is little hope that such approaches extend to the quantitative analysis of probabilistic systems, as the probabilities depend on the size of a system. The unicorn would be an automatic transformation of a parametrised system into a formula, which allows to plot, say, the likelihood to reach a goal or the expected costs to do so, against the parameters of a system. While such analysis exists for narrow classes of systems, such as waiting queues, we aim both lower—stepwise exploring the parameter space—and higher—considering general systems.
The novelty is to heavily exploit the similarity between instances of parametrised systems. When the parameter grows, the system for the smaller parameter is, broadly speaking, present in the larger system. We use this observation to guide the elegant state-elimination method for parametric Markov chains in such a way, that the model transformations will start with those parts of the system that are stable under increasing the parameter. We argue that this can lead to a very cheap iterative way to analyse parametric systems, show how this approach extends to reconfigurable systems, and demonstrate on two benchmarks that this approach scales.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48 (1999)
Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_30
Bohnenkamp, H., van der Stok, P., Hermanns, H., Vaandrager, F.: Cost-optimization of the IPv4 zeroconf protocol, pp. 531–540. IEEE Computer Society Press (2003)
Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21
Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: CAV, pp. 214–231 (2015)
Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental runtime verification of probabilistic systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 314–319. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_30
Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: Investigating parametric influence on discrete synchronisation protocols using quantitative model checking. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 224–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_14
Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: The power of synchronisation: formal analysis of power consumption in networks of pulse-coupled oscillators. arXiv preprint arXiv:1709.04385 (2017)
Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_56
Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric markov models. STTT 13(1), 3–19 (2011)
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_22
Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation. Pearson Education India (2008)
Jansen, N., et al.: Accelerating parametric probabilistic verification. In: QEST, pp. 404–420 (2014)
Johnson, B., Kress-Gazit, H.: Probabilistic analysis of correctness of high-level robot behavior with sensor error. In: Robotics: Science and Systems (2011)
Johnson, B., Kress-Gazit, H.: Probabilistic guarantees for high-level robot behavior in the presence of sensor error. Auton. Robots 33(3), 309–321 (2012)
Johnson, B.L.: Synthesis, analysis, and revision of correct-by-construction controllers for robots with sensing and actuation errors. Ph.D. thesis, Cornell University (2015)
Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov chains: with a chapter of Markov random fields by David Griffeath, vol. 40. Springer, New York (2012). https://doi.org/10.1007/978-1-4684-9455-6
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for Markov decision processes. In: International Conference on Dependable Systems & Networks, pp. 359–370. IEEE (2011)
Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter synthesis for Markov models: faster than ever. In: ATVA, pp. 50–67 (2016)
Acknowledgements
This work was supported by the Sir Joseph Rotblat Alumni Scholarship at Liverpool, EPSRC grants EP/M027287/1 and EP/N007565/1, and by the Marie Skłodowska Curie Fellowship Parametrised Verification and Control.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Gainer, P., Hahn, E.M., Schewe, S. (2018). Incremental Verification of Parametric and Reconfigurable Markov Chains. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-99154-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99153-5
Online ISBN: 978-3-319-99154-2
eBook Packages: Computer ScienceComputer Science (R0)