Skip to main content

Conditional Preference Learning for Personalized and Context-Aware Journey Planning

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

  • 1879 Accesses

Abstract

Conditional preference networks (CP-nets) have recently emerged as a popular language capable of representing ordinal preference relations in a compact and structured manner. In the literature, CP-nets have been developed for modeling and reasoning in mainly toy-sized combinatorial problems, but rarely tested in real-world applications. Learning preferences expressed by passengers is an important topic in sustainable transportation and can be used to improve existing journey planning systems by providing personalized information to the passengers. Motivated by such needs, this paper studies the effect of using CP-nets in the context of personalized and context-aware journey planning. We present a case study where we learn to predict the journey choices by the passengers based on their historical choices in a multi-modal urban transportation network. The experimental results indicate the benefit of the conditional preference in passengers’ modeling in context-aware journey planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.openstreetmap.com.

  2. 2.

    The General Transit Feed Specification (GTFS) data which defines a common format for public transportation schedules and associated geographic information. For more information, please visit http://www.transitwiki.org.

References

  1. Allen, T.E.: CP-nets: from theory to practice. In: Walsh, T. (ed.) ADT 2015. LNCS, vol. 9346, pp. 555–560. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3_33

    Chapter  Google Scholar 

  2. Bell, P., Knowles, N., Everson, P.: Measuring the quality of public transport journey planning. In: IET and ITS Conference on Road Transport Information and Control, RTIC 2012, pp. 1–4. IET (2012)

    Google Scholar 

  3. Bonsall, P.: Do we know whether personal travel planning really works? Transp. Policy 16(6), 306–314 (2009)

    Article  Google Scholar 

  4. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: UAI, pp. 71–80 (1999)

    Google Scholar 

  5. Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)

    Google Scholar 

  6. Corder, G.W., Foreman, D.I.: Nonparametric Statistics: A Step-by-Step Approach. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Haqqani, M., Li, X.: An evolutionary approach for learning conditional preference networks from inconsistent examples. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS, vol. 10604, pp. 502–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_35

    Chapter  Google Scholar 

  9. Haqqani, M., Li, X., Yu, X.: Estimating passenger preferences using implicit relevance feedback for personalized journey planning. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 157–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51691-2_14

    Chapter  Google Scholar 

  10. Haqqani, M., Li, X., Yu, X.: An evolutionary multi-criteria journey planning algorithm for multimodal transportation networks. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS, vol. 10142, pp. 144–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51691-2_13

    Chapter  Google Scholar 

  11. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: ICANN, vol. 1, pp. 97–102 (1999)

    Google Scholar 

  12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  13. Kazawa, H., Hirao, T., Maeda, E.: Order SVM: a kernel method for order learning based on generalized order statistics. Syst. Comput. Jpn. 36(1), 35–43 (2005)

    Article  Google Scholar 

  14. Liu, J., Xiong, Y., Caihua, W., Yao, Z., Liu, W.: Learning conditional preference networks from inconsistent examples. IEEE TKDE 26(2), 376–390 (2014)

    Google Scholar 

  15. Liu, J., Yao, Z., Xiong, Y., Liu, W., Caihua, W.: Learning conditional preference network from noisy samples using hypothesis testing. Knowl.-Based Syst. 40, 7–16 (2013)

    Article  Google Scholar 

  16. Owen, N., Humpel, N., Leslie, E., Bauman, A., Sallis, J.F.: Understanding environmental influences on walking. Am. J. Prev. Med. 27(1), 67–76 (2004)

    Article  Google Scholar 

  17. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904)

    Article  Google Scholar 

  18. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: ACM SIGIR, pp. 391–398 (2007)

    Google Scholar 

Download references

Acknowledgment

This research was supported under Australian Research Council’s Linkage Projects funding scheme (project number LP120200305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haqqani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haqqani, M., Ashrafzadeh, H., Li, X., Yu, X. (2018). Conditional Preference Learning for Personalized and Context-Aware Journey Planning. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics