Skip to main content

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

We rigorously analyze the runtime of evolutionary algorithms for the classical knapsack problem where the weights are favorably correlated with the profits. Our result for the (\(1+1\)) EA generalizes the one obtained in [1] for uniform constraints and shows that an optimal solution in the single-objective setting is obtained in expected time \(O(n^2( \log n + \log p_{\max }))\), where \(p_{\max }\) is the largest profit of the given input. Considering the multi-objective formulation where the goal is to maximize the profit and minimize the weight of the chosen item set at the same time, we show that the Pareto front has size \(n+1\) whereas there are sets of solutions of exponential size where all solutions are incomparable to each other. Analyzing a variant of GSEMO with a size-based parent selection mechanism motivated by these insights, we show that the whole Pareto front is computed in expected time \(O(n^3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrich, T., Kötzing, T., Lagodzinski, G., Neumann, F., Schirneck, M.: Analysis of the (1+1) EA on subclasses of linear functions under uniform and linear constraints. In: Proceedings of the Fourteenth Conference on Foundations of Genetic Algorithms (FOGA), pp. 45–54. ACM (2017)

    Google Scholar 

  2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments, vol. 1. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  4. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16544-3

    Book  MATH  Google Scholar 

  5. Jansen, T.: Computational complexity of evolutionary algorithms. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 815–845. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_26

    Chapter  Google Scholar 

  6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)

    Article  MathSciNet  Google Scholar 

  8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  9. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

    Article  MathSciNet  Google Scholar 

  10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24777-7

    Book  MATH  Google Scholar 

  11. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained optimization problems. IEEE Trans. Evol. Comput. 11(5), 608–619 (2007)

    Article  Google Scholar 

  12. He, J., Mitavskiy, B., Zhou, Y.: A theoretical assessment of solution quality in evolutionary algorithms for the knapsack problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 141–148. IEEE (2014)

    Google Scholar 

  13. Kumar, R., Banerjee, N.: Running time analysis of a multiobjective evolutionary algorithm on simple and hard problems. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 112–131. Springer, Heidelberg (2005). https://doi.org/10.1007/11513575_7

    Chapter  MATH  Google Scholar 

  14. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

    Article  Google Scholar 

  15. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1918–1925. IEEE (2003)

    Google Scholar 

  16. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3), 305–319 (2006)

    Article  MathSciNet  Google Scholar 

  17. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

    Article  Google Scholar 

  18. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica 65(4), 754–771 (2013)

    Article  MathSciNet  Google Scholar 

  19. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.: Maximizing non-monotone/non-submodular functions by multi-objective evolutionary algorithms. CoRR abs/1711.07214 (2017)

    Google Scholar 

  20. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  21. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work has been supported through Australian Research Council (ARC) grant DP160102401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, F., Sutton, A.M. (2018). Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics