Skip to main content

Approximate Arithmetic Circuits: Design and Evaluation

  • Chapter
  • First Online:
Approximate Circuits

Abstract

Arithmetic circuits are important computing modules in a processor. They play a key role in the performance and the energy consumption of many image processing applications. In this chapter, a classification is presented for the current designs of approximate arithmetic circuits including adders, multipliers, and dividers. To understand the features of various designs, a comparative evaluation of their error and circuit characteristics is performed. The accuracy of approximate arithmetic circuits is evaluated by carrying out Monte Carlo simulations. The circuit measurements are assessed by synthesizing approximate designs in an STM CMOS 28 nm process. The simulation and synthesis results show the trade-offs of approximate arithmetic circuits between accuracy and hardware efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angizi S, Jiang H, DeMara RF, Han J, Fan D (2018) Majority-based spin-CMOS primitives for approximate computing. IEEE Trans Nanotechnol 17(4):795–806

    Google Scholar 

  2. Baran D, Aktan M, Oklobdzija VG (2010) Energy efficient implementation of parallel CMOS multipliers with improved compressors. In: Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design. ACM, New York, pp 147–152

    Google Scholar 

  3. Bhardwaj K, Mane PS, Henkel J (2014) Power- and area-efficient approximate Wallace tree multiplier for error-resilient systems. In: International symposium on quality electronic design. IEEE, Piscataway, pp 263–269

    Chapter  Google Scholar 

  4. Cai H, Wang Y, Naviner LA, Wang Z, Zhao W (2016) Approximate computing in MOS/spintronic non-volatile full-adder. In: International symposium on nanoscale architectures. IEEE, Piscataway, pp 203–208

    Google Scholar 

  5. Camus V, Schlachter J, Enz C (2015) Energy-efficient inexact speculative adder with high performance and accuracy control. In: International symposium on circuits and systems. IEEE, Piscataway, pp 45–48

    Google Scholar 

  6. Camus V, Schlachter J, Enz C (2016) A low-power carry cut-back approximate adder with fixed-point implementation and floating-point precision. In: Design automation conference. IEEE, Piscataway, pp 1–6

    Google Scholar 

  7. Chen YH, Chang TY (2012) A high-accuracy adaptive conditional-probability estimator for fixed-width Booth multipliers. IEEE Trans Circuits Syst Regul Pap 59(3):594–603

    Article  MathSciNet  Google Scholar 

  8. Chen L, Han J, Liu W, Lombardi F (2015) Design of approximate unsigned integer non-restoring divider for inexact computing. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 51–56

    Google Scholar 

  9. Chen L, Han J, Liu W, Lombardi F (2016) On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans Comput 65(8):2522–2533

    Article  MathSciNet  Google Scholar 

  10. Chen L, Montuschi P, Han J, Liu W, Lombardi F (2017) Design of approximate high-radix dividers by inexact binary signed-digit addition. In: Proceedings of the on great lakes symposium on VLSI. ACM, New York, pp 293–298

    Google Scholar 

  11. Cho KJ, Lee KC, Chung JG, Parhi, KK (2004) Design of low-error fixed-width modified booth multiplier. IEEE Trans VLSI Syst 12(5):522–531

    Article  Google Scholar 

  12. Du K, Varman P, Mohanram K (2012) High performance reliable variable latency carry select addition. In: Proceedings of the conference on design, automation and test in Europe. EDA Consortium, San Jose, pp 1257–1262

    Google Scholar 

  13. Farshchi F, Abrishami MS, Fakhraie SM (2013) New approximate multiplier for low power digital signal processing. In: International symposium on computer architecture and digital systems. IEEE, Piscataway, pp 25–30

    Google Scholar 

  14. Flynn MJ (1970) On division by functional iteration. IEEE Trans Comput 100(8):702–706

    Article  Google Scholar 

  15. Gupta V, Mohapatra D, Raghunathan A, Roy K (2013) Low-power digital signal processing using approximate adders. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(1):124–137

    Article  Google Scholar 

  16. Han J (2016) Introduction to approximate computing. In: VLSI Test symposium. IEEE, Piscataway, pp 1–1

    Google Scholar 

  17. Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: European test symposium. IEEE, Piscataway, pp 1–6

    Google Scholar 

  18. Hashemi S, Bahar R, Reda S (2015) Drum: a dynamic range unbiased multiplier for approximate applications. In: Proceedings of the IEEE/ACM international conference on computer-aided design. IEEE, Piscataway, pp 418–425

    Google Scholar 

  19. Hashemi S, Bahar R, Reda S (2016) A low-power dynamic divider for approximate applications. In: Proceedings of the 53rd annual design automation conference. ACM, New York, pp 105

    Google Scholar 

  20. Hu J, Qian W (2015) A new approximate adder with low relative error and correct sign calculation. In: Proceedings of the design, automation and test in Europe conference and exhibition. EDA Consortium, San Jose, pp 1449–1454

    Google Scholar 

  21. Jiang H, Han J, Lombardi F (2016) Approximate radix-8 booth multiplier for low-power and high-performance operation. IEEE Trans Comput 65(8):2638–2644

    Article  MathSciNet  Google Scholar 

  22. Jiang H, Liu C, Lombardi F, Han J (2018) Low-power approximate unsigned multipliers with configurable error recovery. IEEE Trans Circuits Sys I 99:1–14

    Google Scholar 

  23. Kahng AB, Kang S (2012) Accuracy-configurable adder for approximate arithmetic designs. In: Design automation conference. IEEE, Piscataway, pp 820–825

    Google Scholar 

  24. Kim Y, Zhang Y, Li P (2013) An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 130–137

    Google Scholar 

  25. Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned multiplier architecture. In: International conference on VLSI design. IEEE, Piscataway, pp 346–351

    Google Scholar 

  26. Kyaw KY, Goh WL, Yeo KS (2010) Low-power high-speed multiplier for error-tolerant application. In: International conference on electron devices and solid-state circuits. IEEE, Piscataway, pp 1–4

    Google Scholar 

  27. Li L, Zhou H (2014) On error modeling and analysis of approximate adders. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 511–518

    Google Scholar 

  28. Liang J, Han J, Lombardi F (2013) New metrics for the reliability of approximate and probabilistic adders. IEEE Trans Comput 62(9):1760–1771

    Article  MathSciNet  Google Scholar 

  29. Lin CH, Lin C (2013) High accuracy approximate multiplier with error correction. In: International conference on computer design. IEEE, Piscataway, pp 33–38

    Google Scholar 

  30. Lin IC, Yang YM, Lin CC (2015) High-performance low-power carry speculative addition with variable latency. IEEE Trans VLSI Syst 23(9):1591–1603

    Article  Google Scholar 

  31. Liu C (2014) Design and analysis of approximate adders and multipliers. University of Alberta, Edmonton

    Google Scholar 

  32. Liu W, Nannarelli A (2012) Power efficient division and square root unit. IEEE Trans Comput 61(8):1059–1070

    Article  MathSciNet  Google Scholar 

  33. Liu C, Han J, Lombardi F (2014) A low-power, high-performance approximate multiplier with configurable partial error recovery. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–4

    Google Scholar 

  34. Liu W, Qian L, Wang C et al (2017) Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans Comput 66(8):1435–1441

    Article  MathSciNet  Google Scholar 

  35. Low JYL, Jong CC (2013) Non-iterative high speed division computation based on Mitchell logarithmic method. In: International symposium on circuits and systems. IEEE, Piscataway, p 2219–2222

    Google Scholar 

  36. Lu SL (2003) Speeding up processing with approximation circuits. Computer 37(3):67–73

    Google Scholar 

  37. Ma J, Man KL, Zhang N, Guan SU, Jeong TT (2013) High-speed area-efficient and power-aware multiplier design using approximate compressors along with bottom-up tree topology. In: International conference on machine vision: algorithms, pattern recognition, and basic technologies, vol 8784. International Society for Optics and Photonics, Bellingham, p 87841Z

    Google Scholar 

  38. Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circuits Syst 57(4):850–862

    Article  MathSciNet  Google Scholar 

  39. Miao J, He K, Gerstlauer A, Orshansky M (2012) Modeling and synthesis of quality-energy optimal approximate adders. In: International conference on computer-aided design. IEEE, Piscataway, p 728–735

    Google Scholar 

  40. Min-An S, Lan-Da V, Sy-Yen K (2007) Adaptive low-error fixed-width Booth multipliers. IEICE Trans Fundam Electron Commun Comput Sci 90(6):1180–1187

    Google Scholar 

  41. Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Trans Electron Comput 4:512–517

    Article  MathSciNet  Google Scholar 

  42. Mohapatra D, Chippa VK, Raghunathan A, Roy K (2011) Design of voltage-scalable meta-functions for approximate computing. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1–6

    Google Scholar 

  43. Momeni A, Han J, Montuschi P, Lombardi F (2014) Design and analysis of approximate compressors for multiplication. IEEE Trans Comput 64(4):984–994

    Article  MathSciNet  Google Scholar 

  44. Narayanamoorthy S, Moghaddam HA, Liu Z, Park T, Kim NS (2015) Energy-efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans VLSI Syst 23(6):1180–1184

    Article  Google Scholar 

  45. Oklobdzija VG, Villeger D, Liu SS (1996) A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Trans Comput 45(3):294–306

    Article  Google Scholar 

  46. Parhami B (2000) Computer arithmetic. Oxford University Press, Oxford

    Google Scholar 

  47. Venkatesan R, Agarwal A, Roy K, Raghunathan A (2011) MACACO: modeling and analysis of circuits for approximate computing. In: International conference on computer-aided design. IEEE, Piscataway, p 667–673

    Google Scholar 

  48. Verma AK, Brisk, P, Ienne, P (2008) Variable latency speculative addition: a new paradigm for arithmetic circuit design. In: Proceedings of the conference on design, automation and test in Europe. ACM, New York, pp 1250–1255

    Chapter  Google Scholar 

  49. Wang JP, Kuang SR, Liang SC (2011) High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans VLSI Syst 19(1):52–60

    Article  Google Scholar 

  50. Wu L, Jong CC (2015) A curve fitting approach for non-iterative divider design with accuracy and performance trade-off. In: New circuits and systems conference. IEEE, Piscataway, pp 1–4

    Google Scholar 

  51. Yang Z, Jain A, Liang J, Han J, Lombardi F (2013) Approximate XOR/XNOR-based adders for inexact computing. In: IEEE conference on nanotechnology. IEEE, Piscataway, pp 690–693

    Google Scholar 

  52. Yang X, Xing Y, Qiao F, Wei Q, Yang H (2016) Approximate adder with hybrid prediction and error compensation technique. In: IEEE computer society annual symposium on VLSI. IEEE, Piscataway, pp 373–378

    Google Scholar 

  53. Ye R, Wang T, Yuan F, Kumar R, Xu Q (2013) On reconfiguration-oriented approximate adder design and its application. In: Proceedings of the international conference on computer-aided design. IEEE, Piscataway, pp 48–54

    Google Scholar 

  54. Zendegani R, Kamal M, Fayyazi A et al (2016) SEERAD: a high speed yet energy-efficient rounding-based approximate divider. In: Design, automation and test in Europe conference and exhibition. IEEE, Piscataway, pp 1481–1484

    Google Scholar 

  55. Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M (2017) RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans VLSI Syst 25(2):393–401

    Article  Google Scholar 

  56. Zhu N, Goh WL, Yeo, KS (2009) An enhanced low-power high-speed adder for error-tolerant application. In: Proceedings of the international symposium on integrated circuits. IEEE, Piscataway, pp 69–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Liu, L., Lombardi, F., Han, J. (2019). Approximate Arithmetic Circuits: Design and Evaluation. In: Reda, S., Shafique, M. (eds) Approximate Circuits. Springer, Cham. https://doi.org/10.1007/978-3-319-99322-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99322-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99321-8

  • Online ISBN: 978-3-319-99322-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics