Skip to main content

Machine Learning-Driven Noise Separation in High Variation Genomics Sequencing Datasets

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2018)

Abstract

Genomics studies have increasingly had to deal with datasets containing high variation between the sequenced nucleotide chains. This is most common in metagenomics studies and polyploid studies, where the biological nature of studied samples requires analysis of multiple variants of nearly identical sequences. The high variation makes it more difficult to determine the correct nucleotide sequences, as well as to distinguish signal from noise, producing digital results with higher error rates than the ones that can be achieved in samples with low variation. This paper presents an original pure machine learning-based approach for detecting and potentially correcting those errors. It uses a generic machine learning-based model that can be applied to different types of sequencing data with minor modifications. As presented in a separate part of this work, these models can be combined with data-specific error candidate selection to apply the models on, for a refined error discovery, but as shown here, can also be used independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The study used a probabilistic error simulation based on estimated error rates.

  2. 2.

    Since SHREC has no parameters to tune, our models were tuned to be close to – or above – SHREC’s detection rates to compare, so each experiment used different tunings and the figures aren’t directly comparable.

References

  1. Allen-Vercoe, E., Petrof, E.O.: The microbiome: what it means for medicine. Br. J. Gen. Pract. 64(620), 118–119 (2014)

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Brenchley, R., et al.: Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426), 705–710 (2012)

    Article  Google Scholar 

  4. Gilles, A., Meglécz, E., Pech, N., Ferreira, S., Malausa, T., Martin, J.F.: Accuracy and quality assessment of 454 gs-flx titanium pyrosequencing. BMC Genomics 12, 245 (2011)

    Article  Google Scholar 

  5. Huse, S., Huber, J., Morrison, H., Sogin, M., Welch, D.: Accuracy and quality of massively parallel dna pyrose- quencing. Genome Biol. 8(7), R143 (2007)

    Article  Google Scholar 

  6. Karlsson, O.E., Hansen, T., Knutsson, R., Löfström, C., Granberg, F., Berg, M.: Metagenomic detection methods in biopreparedness outbreak scenarios. Biosecurity Bioterrorism Biodefense Strategy Pract. Sci. 11(S1), S146–S157 (2013)

    Google Scholar 

  7. Katoh, K., Kuma, K., Toh, H., Miyata, T.: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleid Acid Res. 33(2), 511–518 (2005)

    Article  Google Scholar 

  8. Kau, A.L., et al.: Human nutrition, the gut microbiome, and immune system: envisioning the future. Nature 474(7351), 327–336 (2011)

    Article  Google Scholar 

  9. Kirov, K., Krachunov, M., Kulev, O., Nisheva, M., Vassilev, D.: Reducing false negatives for errors in snp detection using a machine learning approach. Comptes rendus de l’Académie bulgare des Sciences 69(2), 155–160 (2016)

    Google Scholar 

  10. Krachunov, M., Nisheva, M., Vassilev, D.: Machine learning models in error and variant detection high-variation high-throughput sequencing datasets. Procedia Comput. Sci. 108C, 1145–1154 (2017)

    Article  Google Scholar 

  11. Krachunov, M., Vassilev, D.: An approach to a metagenomic data processing workflow. J. Comput. Sci. 5, 357–362 (2014)

    Article  Google Scholar 

  12. Kristensen, D., Mushegian, A., Dolja, V., Koonin, E.: New dimensions of the virus world discovered through metagenomics. Trends Microbiol. 18(1), 11–19 (2010)

    Article  Google Scholar 

  13. Kunin, V., Engelbrektson, A., Ochman, H., Hugenholtz, P.: Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12(1), 118–123 (2010)

    Article  Google Scholar 

  14. Laver, T., et al.: Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantification 3, 1–8 (2015)

    Article  Google Scholar 

  15. Li, R.W. (ed.): Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Pub Inc. (2010)

    Google Scholar 

  16. Li, W., Godzik, A.: Cd-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

    Article  Google Scholar 

  17. Marcussen, T., et al.: Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194), 286–291 (2014)

    Google Scholar 

  18. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for Next-Generation Sequencing data. Genomics 95(6), 315–327 (2010)

    Article  Google Scholar 

  19. Nelson, K., White, B.: Metagenomics and its applications to the study of the human microbiome. In: Metagenomics: Theory, Methods and Applications, pp. 171–182 (2010)

    Google Scholar 

  20. Qi, Y.: Random forest for bioinformatics. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 307–323. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-7_11

    Chapter  Google Scholar 

  21. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-61068-4

    Book  MATH  Google Scholar 

  22. Saei, A.A., Barzegari, A.: The microbiome: the forgotten organ of the astronaut’s body–probiotics beyond terrestrial limits. Future Microbiol. 7(9), 1037–1046 (2012)

    Article  Google Scholar 

  23. Schröder, J., Schröder, H., Puglisi, S.J., Sinha, R., Schmidt, B.: SHREC: a short-read error correction method. Bioinformatics 25(17), 2157–2163 (2009)

    Article  Google Scholar 

  24. United Nations, Food and Agriculture Organization, S.D.F. Crops/World total/Wheat/Area harvested (2014). https://web.archive.org/web/20150906230329/, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed 25 June 2018

  25. Valverde, J., Mellado, R.: Analysis of metagenomic data containing high biodiversity levels. PLoS ONE 8(3) (2013). Article no. e58118

    Google Scholar 

  26. Witten, I.H., Frank, E., Hal, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers, San Francisco (2011)

    Google Scholar 

Download references

Acknowledgements

The presented work has been funded by the Bulgarian NSF within the “GloBIG: A Model of Integration of Cloud Framework for Hybrid Massive Parallelism and its Application for Analysis and Automated Semantic Enhancement of Big Heterogeneous Data Collections” project, Contract DN02/9 of 17.12.2016, and by the Sofia University SRF within the “Models for semantic integration of biomedical data” project, Contract 80-10-207 of 26.04.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Nisheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krachunov, M., Nisheva, M., Vassilev, D. (2018). Machine Learning-Driven Noise Separation in High Variation Genomics Sequencing Datasets. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99344-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99343-0

  • Online ISBN: 978-3-319-99344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics