Skip to main content

Tractable Classes in Exactly-One-SAT

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11089))

Abstract

In this paper, we aim at proposing a new approach for defining tractable classes for Exactly-One-SAT problem (in short EO-SAT). EO-SAT is the problem of deciding whether a given CNF formula has a model so that each clause has exactly one true literal. Our first tractable class is defined by using a simple property that has to be satisfied by every three clauses sharing at least one literal. In a similar way, our second tractable class is obtained from a property that has to be satisfied by particular sequences of clauses. The proposed tractable classes can, in a sense, be seen as natural counterparts of tractable classes of the maximum independent set problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time. Ann. Math. Artif. Intell. 1, 21–32 (1990)

    Article  Google Scholar 

  2. Boumarafi, Y., Sais, L., Salhi, Y.: From SAT to maximum independent set: a new approach to characterize tractable classes. In: LPAR-21 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May 2017, pp. 286–299 (2017)

    Google Scholar 

  3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1999)

    Google Scholar 

  4. Chandrasekharan, N., Iyengar, S.S.: NC algorithms for recognizing chordal graphs and k trees. IEEE Trans. Comput. 37(10), 1178–1183 (1988)

    Article  MathSciNet  Google Scholar 

  5. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  6. Cooper, M.C., Zivny, S.: A new hybrid tractable class of soft constraint problems. In: Principles and Practice of Constraint Programming - CP 2010 –16th International Conference, CP 2010, St. Andrews, Scotland, UK, 6–10 September 2010, Proceedings, pp. 152–166 (2010)

    Google Scholar 

  7. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)

    Article  MathSciNet  Google Scholar 

  8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing satisfiability of propositional Horn formulae. J. Logic Program. 1(3), 267–284 (1984)

    Article  MathSciNet  Google Scholar 

  9. Faudree, R., Flandrin, E., Ryjek, Z.: Claw-free graphs a survey. Discrete Math. 164(13), 87–147 (1997)

    Google Scholar 

  10. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Appl. Math. 156(4), 511–529 (2008)

    Article  MathSciNet  Google Scholar 

  11. Golumbic, M.C. (ed.): Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics (2004)

    Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  14. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI, pp. 359–363 (1992)

    Google Scholar 

  15. Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Math. Logic Q. 13(1–2), 15–20 (1967)

    Article  MathSciNet  Google Scholar 

  16. Lewis, H.R.: Renaming a set of clauses as a Horn set. J. ACM 25(1), 134–135 (1978)

    Article  MathSciNet  Google Scholar 

  17. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B 28(3), 284–304 (1980)

    Google Scholar 

  18. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Discrete Algorithms 6(2), 229–242 (2008)

    Article  MathSciNet  Google Scholar 

  19. Petke, J., Jeavons, P.: The order encoding: from tractable CSP to tractable SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 371–372. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_34

    Chapter  Google Scholar 

  20. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in sat-based formal verification. STTT 7(2), 156–173 (2005)

    Article  Google Scholar 

  21. Stacho, J.: 3-colouring AT-free graphs in polynomial time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6507, pp. 144–155. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17514-5_13

    Chapter  Google Scholar 

  22. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. In: Slesenko, H.A.O. (ed.) Structures in Constructives Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazid Boumarafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boumarafi, Y., Salhi, Y. (2018). Tractable Classes in Exactly-One-SAT. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99344-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99343-0

  • Online ISBN: 978-3-319-99344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics