Skip to main content

Causal Discovery with Bayesian Networks Inductive Transfer

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11061))

Abstract

Bayesian networks (BNs) is a dominate model for representing causal knowledge with uncertainty. Causal discovery with BNs requiring large amount of training data for learning BNs structure. When confronted with small sample scenario the learning task is a big challenge. Transfer learning motivated by the fact that people can intelligently apply knowledge learned previously to solve new problems faster or with better solutions, the paper defines a transferable conditional independence test formula which exploit the knowledge accumulated from data in auxiliary domains to facilitate learning task in the target domain, a BNs inductive transfer algorithm were proposed, which learning the Markov equivalence class of BNs. Empirical experiment was deployed, the results demonstrate the effectiveness of the inductive transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heckerman, D.: A Bayesian approach to learning causal networks. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  2. Jansen, R., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644), 449–453 (2003)

    Article  Google Scholar 

  3. Lo, L.Y., et al.: High-order dynamic Bayesian network learning with hidden common causes for causal gene regulatory network. BMC Bioinf. 16, 395 (2015)

    Article  Google Scholar 

  4. Velikova, M., et al.: Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare. Int. J. Approx. Reasoning 55(1), 59–73 (2014)

    Article  Google Scholar 

  5. Koch, D., Eisinger, R.S., Gebharter, A.: A causal Bayesian network model of disease progression mechanisms in chronic myeloid leukemia. J. Theor. Biol. 433, 94–105 (2017)

    Article  Google Scholar 

  6. Thagard, P.: Causal inference in legal decision making: explanatory coherence vs. Bayesian networks. Appl. Artif. Intell. 18(3–4), 231–249 (2004)

    Article  Google Scholar 

  7. Drury, B., et al.: A survey of the applications of Bayesian networks in agriculture. Eng. Appl. Artif. Intell. 65, 29–42 (2017)

    Article  Google Scholar 

  8. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  9. Silver, D., Bennett, K.: Guest editor’s introduction: special issue on inductive transfer learning. Mach. Learn. 73(3), 215–220 (2008)

    Article  Google Scholar 

  10. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, pp. 117–133. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  12. Yao, T.S., Choi, A., Darwiche, A.: Learning Bayesian network parameters under equivalence constraints. Artif. Intell. 244, 239–257 (2017)

    Article  MathSciNet  Google Scholar 

  13. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  14. Gideon, S.: Estimating the dimension of a model. Ann. Statist. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  15. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an approach based on the MDL principle. Comput. Intell. 10, 269–293 (1994)

    Article  Google Scholar 

  16. Heckerman, D., Shachter, R.: Decision-theoretic foundations for causal reasoning. J. Artif. Intell. Res. 3, 405–430 (1995)

    Article  Google Scholar 

  17. Cheng, J., et al.: Learning Bayesian networks from data: an information-theory based approach. Artif. Intell. 137(1–2), 43–90 (2002)

    Article  MathSciNet  Google Scholar 

  18. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)

    Article  Google Scholar 

  19. Jia, H., et al.: A Hybrid method for orienting edges of Bayesian network. Acta Electronica Sinica 37(8), 1842–1847 (2009)

    Google Scholar 

  20. Verma, T., Pearl, J.: An algorithm for deciding if a set of observed independencies has a causal explanation. In: Uncertainty in Artificial Intelligence Proceedings of the Eighth Conference. Morgan Kaufman, San Francisco (1992)

    Google Scholar 

  21. Thomas, V., Judea, P.: Equivalence and synthesis of causal models. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence. Elsevier Science Inc. (1991)

    Google Scholar 

  22. Lu, J., et al.: Transfer learning using computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

    Article  Google Scholar 

  23. Oyen, D., Lane, T.: Leveraging domain knowledge in multitask Bayesian network structure learning. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  24. Alexandru, N.M., Caruana, R.: Inductive transfer for Bayesian network structure learning. In: 11th AISTATS (2007)

    Google Scholar 

  25. Luis, R., Sucar, L., Morales, E.: Inductive transfer for learning Bayesian networks. Mach. Learn. 79(1–2), 227–255 (2010)

    Article  MathSciNet  Google Scholar 

  26. Oyen, D., Lane, T.: Transfer learning for Bayesian discovery of multiple Bayesian networks. Knowl. Inf. Syst. 43(1), 1–28 (2015)

    Article  Google Scholar 

  27. Oates, C.J., et al.: Exact estimation of multiple directed acyclic graphs. Statist. Comput. 26(4), 797–811 (2016)

    Article  MathSciNet  Google Scholar 

  28. Fiedler, L.J., Sucar, L.E., Morales, E.F.: Transfer learning for temporal nodes Bayesian networks. Appl. Intell. 43(3), 578–597 (2015)

    Article  Google Scholar 

  29. Zhou, Y., Hospedales, T.M., Fenton, N.: When and where to transfer for Bayesian network parameter learning. Expert Syst. Appl. 55, 361–373 (2016)

    Article  Google Scholar 

  30. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-2748-9

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China under Grant Nos. 61502198, 61472161, 61402195, 61103091 and the Science and Technology Development Plan of Jilin Province under Grant No. 20160520099JH, 20150101051JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, H., Wu, Z., Chen, J., Chen, B., Yao, S. (2018). Causal Discovery with Bayesian Networks Inductive Transfer. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics