Abstract
Recommender systems predict a new user’s opinion on a collection of items by analyzing preference information of similar users. The Pawlak rough set (PRS) model is one of the effective tools to make personalized recommendations. The game-theoretic rough set (GTRS) model improves the quality of PRS based recommendations by determining a pair of thresholds that could achieve a tradeoff between two prominent recommendation evaluation metrics, accuracy and coverage. It should be noted that the performance of a recommendation algorithm may be affected by the rating patterns of the users in the considered dataset. The aim of this research is to evaluate how the performance of the PRS based and the GTRS based recommendations vary on user groups with different rating patterns. We conducted comparative experiments on five different data samples. The experimental results suggest that compared to the PRS model, the GTRS model could not only obtain an improvement in coverage level, but also achieve an equal accuracy level on each of the considered data samples. In particular, it achieved a bigger advantage over the PRS model on user groups that make a smaller number of rating records. This performance difference indicates that compared to the PRS model, the GTRS model is a better solution to make high quality personalized recommendations on small-scale datasets with fewer rating records stored in the database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ansari, A., Essegaier, S., Kohli, R.: Internet recommendation systems. J. Mark. Res. 37(3), 363–375 (2000)
Azam, N., Yao, J.T.: Game-theoretic rough sets for recommender systems. Knowl.-Based Syst. 72, 96–107 (2014)
Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
Cremonesi, P., Turrin, R., Lentini, E., Matteucci, M.: An evaluation methodology for collaborative recommender systems. In: International Conference on Automated Solutions for Cross Media Content and Multi-channel Distribution, 2008. AXMEDIS 2008, pp. 224–231 (2008)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
Huang, Z., Zeng, D., Chen, H.C.: A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intell. Syst. 22(5), 68–78 (2007)
Leyton-Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisciplinary introduction. Synthesis Lect. Artif. Intell. Mach. Learn. 2(1), 1–88 (2008)
Liu, F.L., Zhang, B.W., Ciucci, D., Wu, W.Z., Min, F.: A comparison study of similarity measures for covering-based neighborhood classifiers. Inf. Sci. 448, 1–17 (2018)
Middleton, S.E., Roure, D.C.D., Shadbolt, N.R.: Capturing knowledge of user preferences: ontologies in recommender systems. In: The 1st International Conference on Knowledge Capture, pp. 100–107 (2001)
Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K.: A literature review and classification of recommender systems research. Expert Syst. Appl. 39(11), 10059–10072 (2012)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets Syst. 17(1), 99–102 (1985)
Qian, Y.H., Zhang, H., Sang, Y.L., Liang, J.Y.: Multigranulation decision-theoretic rough sets. Int. J. Approximate Reasoning 55(1), 225–237 (2014)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291–324 (2007)
Singh, V.K., Mukherjee, M., Mehta, G.K.: Combining collaborative filtering and sentiment classification for improved movie recommendations. In: Multi-disciplinary Trends in Artificial Intelligence, pp. 38–50 (2011)
Su, X.Y., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4–23 (2009)
Xu, Y.-Y., Zhang, H.-R., Min, F.: A three-way recommender system for popularity-based costs. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 278–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_20
Yao, J.T., Herbert, J.P.: A game-theoretic perspective on rough set analysis. J. Chongqing Univ. Posts Telecommun. (Nat. Sci. Edn.) 20(3), 291–298 (2008)
Zhang, H.R., Min, F., Zhang, Z.H., Wang, S.: Efficient collaborative filtering recommendations with multi-channel feature vectors. Int. J. Mach. Learn. Cybernet. 1–8 (2018)
Zhang, Y., Yao, J.T.: Multi-criteria based three-way classifications with game-theoretic rough sets. In: International Symposium on Methodologies for Intelligent Systems, pp. 550–559 (2017)
Acknowledgments
This work was partially supported by a Discovery Grant from NSERC Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, B., Yao, J. (2018). Exploring GTRS Based Recommender Systems with Users of Different Rating Patterns. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-99368-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99367-6
Online ISBN: 978-3-319-99368-3
eBook Packages: Computer ScienceComputer Science (R0)