Skip to main content

Deep Learning in the Natural Sciences: Applications to Physics

  • Chapter
  • First Online:
Braverman Readings in Machine Learning. Key Ideas from Inception to Current State

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11100))

Abstract

Machine learning is increasingly being used not only in engineering applications such as computer vision and speech recognition, but in data analysis for the natural sciences. Here we describe applications of deep learning to four areas of experimental sub-atomic physics — high-energy physics, antimatter physics, neutrino physics, and dark matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdesselam, A.: Boosted objects: a probe of beyond the standard model physics. Eur. Phys. J. C 71, 1661 (2011)

    Article  Google Scholar 

  2. Adams, D., Arce, A., Asquith, L., Backovic, M., Barillari, T., et al.: Towards an understanding of the correlations in jet substructure. Eur. Phys. J. C 75, 409 (2015)

    Google Scholar 

  3. Aghion, S.: A moiré deflectometer for antimatter. Nat. Commun. 5, 4538 (2014)

    Article  Google Scholar 

  4. Altheimer, A.: Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks. J. Phys. G39, 063001 (2012)

    Article  Google Scholar 

  5. Altheimer, A.: Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012. Eur. Phys. J. C74(3), 2792 (2014)

    Article  Google Scholar 

  6. Alwall, J.: MadGraph 5: going beyond. JHEP 1106, 128 (2011)

    Article  Google Scholar 

  7. Amole, C.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1785 (2013)

    Article  Google Scholar 

  8. Amole, C., et al.: The alpha antihydrogen trapping apparatus. Nucl. Instr. Meth. A 735, 319–340 (2014)

    Article  Google Scholar 

  9. Amoretti, M., et al.: The athena antihydrogen apparatus. Nucl. Instr. Meth. A 518, 679–711 (2004)

    Article  Google Scholar 

  10. Andresen, G.B., et al.: Confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, 558–564 (2011)

    Article  Google Scholar 

  11. Andresen, G., et al.: Trapped antihydrogen. Nature 468(7324), 673–676 (2010)

    Article  Google Scholar 

  12. ATLAS Collaboration: ATLAS experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008)

    Google Scholar 

  13. ATLAS Collaboration: Luminosity determination in PP collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector at the LHC. Eur. Phys.J C73, 2518 (2013)

    Google Scholar 

  14. Aurisano, A., et al.: A convolutional neural network neutrino event classifier. J. Instrum. 11(09), P09001 (2016). http://stacks.iop.org/1748-0221/11/i=09/a=P09001

    Article  Google Scholar 

  15. Bahr, M.: Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008)

    Article  Google Scholar 

  16. Baldi, P.: Deep learning in biomedical data science. Ann. Rev. Biomed. Data Sci. 1, 181 (2018)

    Article  Google Scholar 

  17. Baldi, P.: The inner and outer approaches for the design of recursive neural networks architectures. Data Mining Knowl. Disc. 32, 218–230 (2017). https://doi.org/10.1007/s10618-017-0531-0

    Article  MathSciNet  Google Scholar 

  18. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach, second edition edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  19. Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937–946 (1999)

    Article  Google Scholar 

  20. Baldi, P., Chauvin, Y.: Neural networks for fingerprint recognition. Neural Comput. 5(3), 402–418 (1993)

    Article  Google Scholar 

  21. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network architectures-DAG-RNNs and the protein structure prediction problem. J. Mach. Learn. Res. 4, 575–602 (2003)

    MATH  Google Scholar 

  22. Baldi, P., Sadowski, P.: The dropout learning algorithm. Artif. Intell. 210C, 78–122 (2014)

    Article  MathSciNet  Google Scholar 

  23. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, Article no. 4308 (2014)

    Google Scholar 

  24. Baldi, P., Sadowski, P., Whiteson, D.: Enhanced higgs boson to \(\tau \)\(\tau \) search with deep learning. Phys. Rev. Lett. 114, 111801 (2015)

    Article  Google Scholar 

  25. Baldi, P., Bauer, K., Eng, C., Sadowski, P., Whiteson, D.: Jet substructure classification in high-energy physics with deep neural networks. Phys. Rev. D 93, 094034 (2016). https://doi.org/10.1103/PhysRevD.93.094034

    Article  Google Scholar 

  26. Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., Whiteson, D.: Parameterized neural networks for high-energy physics. Eur. Phys. J. C 76(5), 235 (2016). https://doi.org/10.1140/epjc/s10052-016-4099-4

    Article  Google Scholar 

  27. Beringer, J.: Review of particle physics. Phys. Rev. D 86, 010001 (2012)

    Article  Google Scholar 

  28. Cazaux, S., Lerch, T., Aune, S.: Detecteur courbe de particules gazeux, patent App. EP20,130,188,550, April. https://www.google.ch/patents/EP2720252A3?cl=fr

  29. Cheng, J., Randall, A.Z., Sweredoski, M., Baldi, P.: Scratch: a protein structure and structural feature prediction server. Nucleic Acids Res. 33, W72–W76 (2005)

    Article  Google Scholar 

  30. Chollet, F.: Keras. GitHub (2015). https://github.com/fchollet/keras

  31. CMS Collaboration: Search for light vector resonances decaying to quarks at 13 TeV. CMS-PAS-EXO-16-030 (2016)

    Google Scholar 

  32. Corradini, M., et al.: Experimental apparatus for annihilation cross-section measurements of low energy antiprotons. Nucl. Instr. Meth. A 711, 12–20 (2013)

    Article  Google Scholar 

  33. Corradini, M.: Scintillating bar detector for antiproton annihilations measurements. Hyperfine Interact. 233, 53–58 (2015)

    Article  Google Scholar 

  34. Cranmer, K., Pavez, J., Louppe, G.: Approximating likelihood ratios with calibrated discriminative classifiers (2015)

    Google Scholar 

  35. Krohn, D., Thaler, J., Wang, L.T.: Jet trimming. JHEP 1002, 084 (2010)

    Google Scholar 

  36. Dasgupta, M., Fregoso, A., Marzani, S., Powling, A.: Jet substructure with analytical methods. Eur. Phys. J. C 73(11), 2623 (2013)

    Article  Google Scholar 

  37. Dasgupta, M., Powling, A., Siodmok, A.: On jet substructure methods for signal jets. JHEP 08, 079 (2015)

    Article  Google Scholar 

  38. Dolen, J., Harris, P., Marzani, S., Rappoccio, S., Tran, N.: Thinking outside the ROCs: designing decorrelated taggers (DDT) for jet substructure. JHEP 05, 156 (2016)

    Article  Google Scholar 

  39. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Neural Information Processing Systems (2015)

    Google Scholar 

  40. Edwards, H., Storkey, A.J.: Censoring representations with an adversary (2016). http://arxiv.org/abs/1511.05897

  41. Feng, J.L.: Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 48, 495–545 (2010)

    Article  Google Scholar 

  42. Gabrielse, G., et al.: Trapped antihydrogen in its ground state. Phys. Rev. Lett. 108, 113002 (2012). https://doi.org/10.1103/PhysRevLett.108.113002

    Article  Google Scholar 

  43. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016). http://dl.acm.org/citation.cfm?id=2946645.2946704

  44. Giomataris, Y., Rebourgeard, P., Robert, J.P., Charpak, G.: Micromegas: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instr. Meth. A 376, 29 (1996)

    Article  Google Scholar 

  45. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  46. Guest, D., Collado, J., Baldi, P., Hsu, S.C., Urban, G., Whiteson, D.: Jet flavor classification in high-energy physics with deep neural networks. Phys. Rev. D 94, 112002 (2016). https://doi.org/10.1103/PhysRevD.94.112002

    Article  Google Scholar 

  47. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  48. Hertel, L., Li, L., Baldi, P., Bian, J.: Convolutional neural networks for electron neutrino and electron shower energy reconstruction in the nova detectors. In: Deep Learning for Physical Sciences Workshop at Neural Information Processing Systems (2017)

    Google Scholar 

  49. Hori, M., Yamashita, K., Hayano, R., Yamazaki, T.: Analog cherenkov detectors used in laser spectroscopy experiments on antiprotonic helium. Nucl. Instr. Meth. A 496, 102–122 (2003)

    Article  Google Scholar 

  50. Kaplan, D.E., Rehermann, K., Schwartz, M.D., Tweedie, B.: Top tagging: a method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 101, 142001 (2008)

    Article  Google Scholar 

  51. Kayala, M., Azencott, C., Chen, J., Baldi, P.: Learning to predict chemical reactions. J. Chem. Inf. Model. 51(9), 2209–2222 (2011)

    Article  Google Scholar 

  52. Kayala, M., Baldi, P.: Reactionpredictor: prediction of complex chemical reactions at the mechanistic level using machine learning. J. Chem. Inf. Model. 52(10), 2526–2540 (2012)

    Article  Google Scholar 

  53. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  54. Kuroda, N.: A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 5, 3089 (2014)

    Article  Google Scholar 

  55. Larkoski, A.J., Marzani, S., Soyez, G., Thaler, J.: Soft Drop. JHEP 1405, 146 (2014)

    Article  Google Scholar 

  56. Larkoski, A.J., Moult, I., Neill, D.: Power counting to better jet observables. JHEP 12, 009 (2014)

    Article  Google Scholar 

  57. Larkoski, A.J., Salam, G.P., Thaler, J.: Energy correlation functions for jet substructure. JHEP 1306, 108 (2013)

    Article  MathSciNet  Google Scholar 

  58. Louppe, G., Cho, K., Becot, C., Cranmer, K.: QCD-aware recursive neural networks for jet physics (2017)

    Google Scholar 

  59. Louppe, G., Kagan, M., Cranmer, K.: Learning to pivot with adversarial networks (2016)

    Google Scholar 

  60. Lusci, A., Pollastri, G., Baldi, P.: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 53(7), 1563–1575 (2013)

    Article  Google Scholar 

  61. Dasgupta, M., Fregoso, A., Marzani, S., Salam, G.P.: Towards an understanding of jet substructure. JHEP 9, 029 (2013)

    Google Scholar 

  62. Magnan, C.N., Baldi, P.: SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity. Bioinformatics 30(18), 2592–2597 (2014)

    Article  Google Scholar 

  63. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Furnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814. Omnipress (2010). http://www.icml2010.org/papers/432.pdf

  64. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probability distribution. In: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 1, pp. 55–60, June 1994

    Google Scholar 

  65. de Oliveira, L., Kagan, M., Mackey, L., Nachman, B., Schwartzman, A.: Jet-images – deep learning edition. J. High Energy Phys. 2016(7), 69 (2016). https://doi.org/10.1007/JHEP07(2016)069

    Article  Google Scholar 

  66. Ovyn, S., Rouby, X., Lemaitre, V.: DELPHES, a framework for fast simulation of a generic collider experiment (2009)

    Google Scholar 

  67. Planck Collaboration: Planck 2013 results. XVI, Cosmological parameters (2013)

    Google Scholar 

  68. Plehn, T., Spannowsky, M., Takeuchi, M., Zerwas, D.: Stop reconstruction with tagged tops. JHEP 1010, 078 (2010)

    Article  Google Scholar 

  69. Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the prediction of protein secondary strucure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235 (2001)

    Article  Google Scholar 

  70. Pérez, P.: The GBAR antimatter gravity experiment. Hyperfine Interact. 233, 21–27 (2015)

    Article  Google Scholar 

  71. Racah, E., et al.: Revealing fundamental physics from the daya bay neutrino experiment using deep neural networks. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 892–897, December 2016

    Google Scholar 

  72. Radics, B., Murtagh, D.J., Yamazaki, Y., Robicheaux, F.: Scaling behavior of the ground-state antihydrogen yield as a function of positron density and temperature from classical-trajectory Monte Carlo simulations. Phys. Rev. A 90(3), 032704 (2014). https://doi.org/10.1103/PhysRevA.90.032704

    Article  Google Scholar 

  73. Radics, B., et al.: The ASACUSA micromegas tracker: a cylindrical, bulk micromegas detector for antimatter research. Rev. Sci. Instrum. 86, 083304 (2015)

    Article  Google Scholar 

  74. Ellis, S.D., Vermilion, C.K., Walsh, J.R.: Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches. Phys. Rev. D81, 094023 (2010)

    Google Scholar 

  75. Sadowski, P., Collado, J., Whiteson, D., Baldi, P.: Deep learning, dark knowledge, and dark matter. J. Mach. Learn. Res. 42, 81–97 (2015). Workshop and Conference Proceedings

    Google Scholar 

  76. Sadowski, P., Radics, B., Ananya, Yamazaki, Y., Baldi, P.: Efficient antihydrogen detection in antimatter physics by deep learning. J. Phys. Commun. 1(2), 025001 (2017). http://stacks.iop.org/2399-6528/1/i=2/a=025001

    Article  Google Scholar 

  77. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Comput. 4, 863–879 (1991)

    Article  Google Scholar 

  78. Shimmin, C., et al.: Decorrelated jet substructure tagging using adversarial neural networks. Phys. Rev. D 96, 074034 (2017). arXiv: 1703.03507

  79. Shimmin, C., Whiteson, D.: Boosting low-mass hadronic resonances. Phys. Rev. D 94, 055001 (2016). https://doi.org/10.1103/PhysRevD.94.055001

    Article  Google Scholar 

  80. Sjostrand, T., et al.: PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006)

    Article  Google Scholar 

  81. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 2951–2959. Curran Associates, Inc. (2012)

    Google Scholar 

  82. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

  83. Storey, J.: Particle tracking at 4k: the fast annihilation cryogenic tracking (fact) detector for the aegis antimatter gravity experiment. Nucl. Instr. Meth. A 732, 437–441 (2013)

    Article  Google Scholar 

  84. Strandlie, A., Frühwirth, R.: Track and vertex reconstruction: from classical to adaptive methods. Rev. Mod. Phys. 82, 1419 (2010)

    Article  Google Scholar 

  85. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

  86. Thaler, J., Van Tilburg, K.: Identifying boosted objects with N-subjettiness. JHEP 1103, 015 (2011)

    Article  Google Scholar 

  87. Thaler, J., Van Tilburg, K.: Maximizing boosted top identification by minimizing n-subjettiness. JHEP 02, 093 (2012)

    Article  Google Scholar 

  88. Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, May 2016. http://arxiv.org/abs/1605.02688

  89. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5, April 2015

    Google Scholar 

  90. XENON Collaboration: First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119(18), 181301 (2017)

    Google Scholar 

  91. XENON Collaboration: The XENON1T dark matter experiment. Eur. Phys. J. C 77(12), 881, December 2017. https://doi.org/10.1140/epjc/s10052-017-5326-3

  92. Zhang, Z., Oelert, W., Grzonka, D., Sefzick, T.: The antiproton annihilation detector system of the atrap experiment. Chin. Sci. Bull. 54, 189–195 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Baldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadowski, P., Baldi, P. (2018). Deep Learning in the Natural Sciences: Applications to Physics. In: Rozonoer, L., Mirkin, B., Muchnik, I. (eds) Braverman Readings in Machine Learning. Key Ideas from Inception to Current State. Lecture Notes in Computer Science(), vol 11100. Springer, Cham. https://doi.org/10.1007/978-3-319-99492-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99492-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99491-8

  • Online ISBN: 978-3-319-99492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics