Skip to main content

Quantum Circuits for Floating-Point Arithmetic

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

Quantum algorithms to solve practical problems in quantum chemistry, materials science, and matrix inversion often involve a significant amount of arithmetic operations which act on a superposition of inputs. These have to be compiled to a set of fault-tolerant low-level operations and throughout this translation process, the compiler aims to come close to the Pareto-optimal front between the number of required qubits and the depth of the resulting circuit. In this paper, we provide quantum circuits for floating-point addition and multiplication which we find using two vastly different approaches. The first approach is to automatically generate circuits from classical Verilog implementations using synthesis tools and the second is to generate and optimize these circuits by hand. We compare our two approaches and provide evidence that floating-point arithmetic is a viable candidate for use in quantum computing, at least for typical scientific applications, where addition operations usually do not dominate the computation. All our circuits were constructed and tested using the software tools LIQ\(Ui|\rangle {}\) and RevKit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)

    Google Scholar 

  2. Babbush, R., Berry, D.W., Kivlichan, I.D., Wei, A.Y., Love, P.J., Aspuru-Guzik, A.: Exponentially more precise quantum simulation of fermions in second quantization. New J. Phys. 18(3), 033032 (2016)

    Article  Google Scholar 

  3. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D., Troyer, M.: Elucidating reaction mechanisms on quantum computers. arXiv:1605.03590 (2016)

  4. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  Google Scholar 

  5. Steane, A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68(4), 042322 (2003)

    Article  Google Scholar 

  6. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Hierarchical reversible logic synthesis using LUTs. In: Design Automation Conference, pp. 78:1–78:6. ACM (2017)

    Google Scholar 

  7. Cong, J., Ding, Y.: FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs. IEEE Trans. CAD Integr. Circ. Syst. 13(1), 1–12 (1994)

    Article  Google Scholar 

  8. Chen, D., Cong, J.: DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs. In: International Conference on Computer-Aided Design, pp. 752–759 (2004)

    Google Scholar 

  9. Ray, S., Mishchenko, A., Een, N., Brayton, R., Jang, S., Chen, C.: Mapping into LUT structures. In: Design, Automation and Test in Europe, pp. 1579–1584 (2012)

    Google Scholar 

  10. Abdessaied, N., Soeken, M., Drechsler, R.: Technology mapping for single target gate based circuits using Boolean functional decomposition. In: International Conference on Reversible Computation, pp. 219–232 (2015)

    Google Scholar 

  11. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation and Test in Europe, pp. 470–475. IEEE (2017)

    Google Scholar 

  12. Soeken, Mathias Chattopadhyay, Anupam: Unlocking efficiency and scalability of reversible logic synthesis using conventional logic synthesis. In: Design Automation Conference, pages 149:1–149:6 (2016)

    Google Scholar 

  13. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530 (2009)

  14. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n+ 2 qubits with Toffoli based modular multiplication. Quantum Inf. Comput. 17(7–8) (2017)

    Google Scholar 

  15. Wecker, D., Svore, K.M.: LIQ\(Ui|\rangle \): A software design architecture and domain-specific language for quantum computing. arXiv:1402.4467 (2014)

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Jones, C.: Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A 87(2), 022328 (2013)

    Article  Google Scholar 

  18. Nguyen, T.D., Van Meter, R.: A resource-efficient design for a reversible floating point adder in quantum computing. ACM J. Emerg. Technol. Comput. Syst. 11(2), 13:1–13:18 (2014)

    Article  Google Scholar 

  19. Knuth, D.E.: Evaluation of polynomials by computer. Commun. ACM 5(12), 595–599 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Roetteler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haener, T., Soeken, M., Roetteler, M., Svore, K.M. (2018). Quantum Circuits for Floating-Point Arithmetic. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics