Abstract
Reversible lattice dynamics embody basic features of physics that govern the time evolution of classical information. They have finite resolution in space and time, don’t allow information to be erased, and easily accommodate other structural properties of microscopic physics, such as finite distinct state and locality of interaction. In an ideal quantum realization of a reversible lattice dynamics, finite classical rates of state-change at lattice sites determine average energies and momenta. This is very different than traditional continuous models of classical dynamics, where the number of distinct states is infinite, the rate of change between distinct states is infinite, and energies and momenta are not tied to rates of distinct state change. Here we discuss a family of classical mechanical models that have the informational and energetic realism of reversible lattice dynamics, while retaining the continuity and mathematical framework of classical mechanics. These models may help to clarify the informational foundations of mechanics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Planck, M.: Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. (Berlin) 309, 553 (1901)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998)
Margolus, N.: Counting distinct states in physical dynamics (in preparation)
Margolus, N.: The finite state character of physical dynamics. arXiv:1109.4994
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)
Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)
Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, New York (1974)
Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, New York (1971)
Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)
Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
Rothman, D., Zaleski, S.: Lattice Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (2004)
Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2005)
Rivet, J.P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, Cambridge (2005)
Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D 10, 117 (1984)
Heisenberg, W.: Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Z. Phys. 43, 172 (1927)
Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47, 617 (1928)
Meijering, E.: A chronology of interpolation. Proc. IEEE 90, 319 (2002)
Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. (USSR) 9, 249 (1945)
Margolus, N.: Quantum emulation of classical dynamics. arXiv:1109.4995
Margolus, N.: The ideal energy of classical lattice dynamics. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 169–180. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7_13
Kempf, A.: Spacetime could be simultaneously continuous and discrete, in the same way that information can be. New J. Phys. 12, 115001 (2010)
Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys. Rev. A 13, 1949 (1976)
Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)
Margolus, N., Toffoli, T., Vichniac, G.: Cellular-automata supercomputers for fluid dynamics modeling. Phys. Rev. Lett. 56, 1694 (1986)
Noether, E.: Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, pp. 235–257 (1918)
Fredkin, E.: Digital mechanics: an information process based on reversible universal cellular automata. Physica D 45, 254 (1990)
Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D 45, 229 (1990)
Kari, J.: Representation of reversible cellular automata with block permutations. Math. Syst. Theor. 29, 47 (1996)
Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discrete Math. Theor. Comput. Sci. Proc. AA, 145 (2001)
Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 231–260. Oxford University Press, Oxford (2003). arXiv:0806.0127
Hrgovčić, H.: Discrete representations of the n-dimensional wave equation. J. Phys. A Math. Gen. 25, 1329 (1992)
Toffoli, T.: Action, or the fungibility of computation. In: Hey, A. (ed.) Feynman and Computation, pp. 349–392. Perseus Books, Reading (1998)
Margolus, N.: Physics and computation. Ph.D. thesis, Massachusetts Institute of Technology (1987)
Margolus, N.: Crystalline computation. In: Hey, A. (ed.) Feynman and Computation, pp. 267–305. Perseus Books, Reading (1998). arXiv:comp-gas/9811002
Ben-Abraham, S.I.: Curious properties of simple random walks. J. Stat. Phys. 73, 441 (1993)
Smith, M.: Representation of geometrical and topological quantities in cellular automata. Physica D 45, 271 (1990)
’t Hooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41285-6. arXiv:1405.1548
Acknowledgements
I thank Ed Fredkin and Tom Toffoli for pioneering and inspiring these ideas, and Gerald Sussman for many wonderful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Margolus, N. (2018). Finite-State Classical Mechanics. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-99498-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99497-0
Online ISBN: 978-3-319-99498-7
eBook Packages: Computer ScienceComputer Science (R0)