Skip to main content

Finite-State Classical Mechanics

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

Reversible lattice dynamics embody basic features of physics that govern the time evolution of classical information. They have finite resolution in space and time, don’t allow information to be erased, and easily accommodate other structural properties of microscopic physics, such as finite distinct state and locality of interaction. In an ideal quantum realization of a reversible lattice dynamics, finite classical rates of state-change at lattice sites determine average energies and momenta. This is very different than traditional continuous models of classical dynamics, where the number of distinct states is infinite, the rate of change between distinct states is infinite, and energies and momenta are not tied to rates of distinct state change. Here we discuss a family of classical mechanical models that have the informational and energetic realism of reversible lattice dynamics, while retaining the continuity and mathematical framework of classical mechanics. These models may help to clarify the informational foundations of mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Planck, M.: Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. (Berlin) 309, 553 (1901)

    Article  Google Scholar 

  2. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998)

    Article  Google Scholar 

  3. Margolus, N.: Counting distinct states in physical dynamics (in preparation)

    Google Scholar 

  4. Margolus, N.: The finite state character of physical dynamics. arXiv:1109.4994

  5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)

    Article  MathSciNet  Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  Google Scholar 

  7. Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, New York (1974)

    MATH  Google Scholar 

  8. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, New York (1971)

    Google Scholar 

  9. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  10. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  11. Rothman, D., Zaleski, S.: Lattice Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  13. Rivet, J.P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D 10, 117 (1984)

    Article  MathSciNet  Google Scholar 

  15. Heisenberg, W.: Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Z. Phys. 43, 172 (1927)

    Article  Google Scholar 

  16. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47, 617 (1928)

    Article  Google Scholar 

  17. Meijering, E.: A chronology of interpolation. Proc. IEEE 90, 319 (2002)

    Article  Google Scholar 

  18. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. (USSR) 9, 249 (1945)

    MathSciNet  MATH  Google Scholar 

  19. Margolus, N.: Quantum emulation of classical dynamics. arXiv:1109.4995

  20. Margolus, N.: The ideal energy of classical lattice dynamics. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 169–180. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7_13

    Chapter  Google Scholar 

  21. Kempf, A.: Spacetime could be simultaneously continuous and discrete, in the same way that information can be. New J. Phys. 12, 115001 (2010)

    Article  Google Scholar 

  22. Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys. Rev. A 13, 1949 (1976)

    Article  Google Scholar 

  23. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)

    Article  Google Scholar 

  24. Margolus, N., Toffoli, T., Vichniac, G.: Cellular-automata supercomputers for fluid dynamics modeling. Phys. Rev. Lett. 56, 1694 (1986)

    Article  Google Scholar 

  25. Noether, E.: Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, pp. 235–257 (1918)

    Google Scholar 

  26. Fredkin, E.: Digital mechanics: an information process based on reversible universal cellular automata. Physica D 45, 254 (1990)

    Article  MathSciNet  Google Scholar 

  27. Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D 45, 229 (1990)

    Article  MathSciNet  Google Scholar 

  28. Kari, J.: Representation of reversible cellular automata with block permutations. Math. Syst. Theor. 29, 47 (1996)

    Article  MathSciNet  Google Scholar 

  29. Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discrete Math. Theor. Comput. Sci. Proc. AA, 145 (2001)

    Google Scholar 

  30. Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 231–260. Oxford University Press, Oxford (2003). arXiv:0806.0127

    Google Scholar 

  31. Hrgovčić, H.: Discrete representations of the n-dimensional wave equation. J. Phys. A Math. Gen. 25, 1329 (1992)

    Article  MathSciNet  Google Scholar 

  32. Toffoli, T.: Action, or the fungibility of computation. In: Hey, A. (ed.) Feynman and Computation, pp. 349–392. Perseus Books, Reading (1998)

    Google Scholar 

  33. Margolus, N.: Physics and computation. Ph.D. thesis, Massachusetts Institute of Technology (1987)

    Google Scholar 

  34. Margolus, N.: Crystalline computation. In: Hey, A. (ed.) Feynman and Computation, pp. 267–305. Perseus Books, Reading (1998). arXiv:comp-gas/9811002

    Google Scholar 

  35. Ben-Abraham, S.I.: Curious properties of simple random walks. J. Stat. Phys. 73, 441 (1993)

    Article  MathSciNet  Google Scholar 

  36. Smith, M.: Representation of geometrical and topological quantities in cellular automata. Physica D 45, 271 (1990)

    Article  Google Scholar 

  37. ’t Hooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41285-6. arXiv:1405.1548

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I thank Ed Fredkin and Tom Toffoli for pioneering and inspiring these ideas, and Gerald Sussman for many wonderful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Margolus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Margolus, N. (2018). Finite-State Classical Mechanics. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics