Abstract
A complete reversible Turing machine bijectively transforms configurations consisting of a state and a bi-infinite tape of symbols into another configuration by updating locally the tape around the head and translating the head on the tape. We discuss a simple machine with 4 states and 3 symbols that has no periodic orbit and how that machine can be embedded into other ones to prove undecidability results on decision problems related to dynamical properties of Turing machines.
The results presented in this talk were obtained in joint work with J. Cassaigne, A. Gajardo, J. Kari and R. Torres-Avilés.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berger, R.: The Undecidability of the Domino Problem, vol. 66. Memoirs American Mathematical Society (1966)
Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations in Turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590 (2002)
Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A small minimal aperiodic reversible Turing machine. J. Comput. Syst. Sci. 84, 288–301 (2017)
Gajardo, A., Ollinger, N., Torres-Avilés, R.: The transitivity problem of Turing machines. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 231–242. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_18
Hooper, P.K.: The undecidability of the Turing machine immortality problem. J. Symbolic Logic 31(2), 219–234 (1966)
Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_34
Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21(3), 571–586 (1992)
Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci. 174(1–2), 203–216 (1997)
Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Ollinger, N. (2018). On Aperiodic Reversible Turing Machines (Invited Talk). In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-99498-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99497-0
Online ISBN: 978-3-319-99498-7
eBook Packages: Computer ScienceComputer Science (R0)