Skip to main content

A Unified Approach to Quantum Computation and Classical Reversible Computation

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

The design of a quantum computer and the design of a classical computer can be based on quite similar circuit designs. The former is based on the subgroup structure of the infinite group of unitary matrices, whereas the latter is based on the subgroup structure of the finite group of permutation matrices. Because these two groups display similarities as well as differences, the corresponding circuit designs are comparable but not identical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. De Vos, A.: Reversible Computing. Wiley - VCH, Weinheim (2010)

    Book  Google Scholar 

  3. De Vos, A., De Baerdemacker, S., Van Rentergem, Y.: Synthesis of Quantum Circuits Versus Synthesis of Classical Reversible Circuits. Morgan & Claypool, La Porte (2018)

    Google Scholar 

  4. De Vos, A., De Baerdemacker, S.: Scaling a unitary matrix. Open Syst. Inf. Dyn. 21, 1450013 (2014)

    Article  MathSciNet  Google Scholar 

  5. Idel, M., Wolf, M.: Sinkhorn normal form for unitary matrices. Linear Algebra Appl. 471, 76–84 (2015)

    Article  MathSciNet  Google Scholar 

  6. Führ, H., Rzeszotnik, Z.: On biunimodular vectors for unitary matrices. Linear Algebra Appl. 484, 86–129 (2015)

    Article  MathSciNet  Google Scholar 

  7. De Vos, A., De Baerdemacker, S.: Block-ZXZ synthesis of an arbitrary quantum circuit. Phys. Rev. A 94, 052317 (2016)

    Article  Google Scholar 

  8. Chen, L., Yu, L.: Decomposition of bipartite and multipartite unitary gates. Phys. Rev. A 91, 032308 (2015)

    Article  Google Scholar 

  9. Führ, H., Rzeszotnik, Z.: A note on factoring unitary matrices. Linear Algebra Appl. 547, 32–44 (2018)

    Article  MathSciNet  Google Scholar 

  10. Selinger, P.: Efficient Clifford\(+T\) approximations of single-qubit operators. Quant. Inf. Comput. 15, 159–180 (2015)

    MathSciNet  Google Scholar 

  11. De Vos, A., De Baerdemacker, S.: The group zoo of classical reversible computing and quantum computing. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 455–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33924-5_18

    Chapter  Google Scholar 

  12. De Vos, A., Van Rentergem, Y.: Synthesis of reversible logic for nanoelectronic circuits. Int. J. Circ. Theor. Appl. 35, 325–341 (2007)

    Article  Google Scholar 

  13. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2, 183–200 (2008)

    Article  MathSciNet  Google Scholar 

  14. De Vos, A., Raa, B., Storme, L.: Generating the group of reversible logic gates. J. Phys. A Math. Gen. 35, 7063–7078 (2002)

    Article  MathSciNet  Google Scholar 

  15. de Werra, D.: Path coloring in bipartite graphs. Eur. J. Oper. Res. 164, 575–584 (2005)

    Article  MathSciNet  Google Scholar 

  16. Peng, C., Bochman, G., Hall, T.: Quick Birkhoff-von Neumann decomposition algorithm for agile all-photonic network cores. In: Proceedings of the IEEE International Conference on Communications, Istanbul, pp. 2593–2598, June 2006

    Google Scholar 

  17. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucumán: Revista Matemáticas y Física Teórica 5, 147–151 (1946)

    Google Scholar 

Download references

Acknowledgements

The authors thank the European COST Action IC 1405 ‘Reversible computation’ for its valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis De Vos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Vos, A., De Baerdemacker, S. (2018). A Unified Approach to Quantum Computation and Classical Reversible Computation. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics