Abstract
The design of a quantum computer and the design of a classical computer can be based on quite similar circuit designs. The former is based on the subgroup structure of the infinite group of unitary matrices, whereas the latter is based on the subgroup structure of the finite group of permutation matrices. Because these two groups display similarities as well as differences, the corresponding circuit designs are comparable but not identical.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
De Vos, A.: Reversible Computing. Wiley - VCH, Weinheim (2010)
De Vos, A., De Baerdemacker, S., Van Rentergem, Y.: Synthesis of Quantum Circuits Versus Synthesis of Classical Reversible Circuits. Morgan & Claypool, La Porte (2018)
De Vos, A., De Baerdemacker, S.: Scaling a unitary matrix. Open Syst. Inf. Dyn. 21, 1450013 (2014)
Idel, M., Wolf, M.: Sinkhorn normal form for unitary matrices. Linear Algebra Appl. 471, 76–84 (2015)
Führ, H., Rzeszotnik, Z.: On biunimodular vectors for unitary matrices. Linear Algebra Appl. 484, 86–129 (2015)
De Vos, A., De Baerdemacker, S.: Block-ZXZ synthesis of an arbitrary quantum circuit. Phys. Rev. A 94, 052317 (2016)
Chen, L., Yu, L.: Decomposition of bipartite and multipartite unitary gates. Phys. Rev. A 91, 032308 (2015)
Führ, H., Rzeszotnik, Z.: A note on factoring unitary matrices. Linear Algebra Appl. 547, 32–44 (2018)
Selinger, P.: Efficient Clifford\(+T\) approximations of single-qubit operators. Quant. Inf. Comput. 15, 159–180 (2015)
De Vos, A., De Baerdemacker, S.: The group zoo of classical reversible computing and quantum computing. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 455–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33924-5_18
De Vos, A., Van Rentergem, Y.: Synthesis of reversible logic for nanoelectronic circuits. Int. J. Circ. Theor. Appl. 35, 325–341 (2007)
De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2, 183–200 (2008)
De Vos, A., Raa, B., Storme, L.: Generating the group of reversible logic gates. J. Phys. A Math. Gen. 35, 7063–7078 (2002)
de Werra, D.: Path coloring in bipartite graphs. Eur. J. Oper. Res. 164, 575–584 (2005)
Peng, C., Bochman, G., Hall, T.: Quick Birkhoff-von Neumann decomposition algorithm for agile all-photonic network cores. In: Proceedings of the IEEE International Conference on Communications, Istanbul, pp. 2593–2598, June 2006
Birkhoff, G.: Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucumán: Revista Matemáticas y FÃsica Teórica 5, 147–151 (1946)
Acknowledgements
The authors thank the European COST Action IC 1405 ‘Reversible computation’ for its valuable support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
De Vos, A., De Baerdemacker, S. (2018). A Unified Approach to Quantum Computation and Classical Reversible Computation. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-99498-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99497-0
Online ISBN: 978-3-319-99498-7
eBook Packages: Computer ScienceComputer Science (R0)