Abstract
The paper describes HMM-based phonetic segmentation realized by KALDI toolkit with the focus on study of accuracy of various acoustic modeling such as GMM-HMM vs. DNN-HMM, monophone vs. triphone, speaker independent vs. speaker dependent. The analysis was performed using TIMIT database and it proved the contribution of advanced acoustic modeling for the choice of a proper pronunciation variant. For this purpose, the lexicon covering the pronunciation variability among TIMIT speakers was created on the basis of phonetic transcriptions available in TIMIT corpus. When the proper sequence of phones is recognized by DNN-HMM system, more precise boundary placement can be then obtained using basic monophone acoustic models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Discussed in KALDI community at https://groups.google.com/forum/#!topic/kaldi-help/cSAm5iXGhZo.
References
CMUSphinx: Open source speech recognition toolkit. http://cmusphinx.github.io
Brunet, R.G., Murthy, H.A.: Pronunciation variation across different dialects for English: a syllable-centric approach. In: 2012 National Conference on Communications (NCC) (2012)
Garofolo, J.S., et al.: TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web download. Linguistic Data Consortium, Philadelphia (1993)
Ghoshal, A., Povey, D.: Sequence-discriminative training of deep neural networks. In: Proceedings of the INTERSPEECH, Lyon, France (2013)
Kahn, A., Steiner, I.: Qualitative evaluation and error analysis of phonetic segmentation. In: 28. Konferenz Elektronische Sprachsignalverarbeitung, Saarbrücken, Germany, pp. 138–144 (2017)
Lee, K.F., Hon, H.W.: Speaker-independent phone recognition using hidden Markov models. IEEE Trans. Audio Speech Lang. Process. 37(11), 1641–1648 (1989)
Matoušek, J., Klíma, M.: Automatic phonetic segmentation using the KALDI toolkit. In: Ekštein, K., Matoušek, V. (eds.) TSD 2017. LNCS (LNAI), vol. 10415, pp. 138–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64206-2_16
Matoušek, J., Tihelka, D., Psutka, J.: Experiments with automatic segmentation for Czech speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 287–294. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39398-6_41
Mizera, P., Pollak, P., Kolman, A., Ernestus, M.: Impact of irregular pronunciation on phonetic segmentation of Nijmegen corpus of casual Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2014. LNCS (LNAI), vol. 8655, pp. 499–506. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10816-2_60
Nouza, J., Silovský, J.: Adapting lexical and language models for transcription of highly spontaneous spoken Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS (LNAI), vol. 6231, pp. 377–384. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15760-8_48
Peddinti, V., Wang, Y., Povey, D., Khudanpur, S.: Low latency acoustic modeling using temporal convolution and LSTMs. IEEE Signal Process. Lett. 25(3), 373–377 (2018)
Povey, D., et al.: The Kaldi speech recognition toolkit. In: Proceedings of the IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, ASRU 2011 (2011)
Rendel, A., Sorin, A., Hoory, R., Breen, A.: Toward automatic phonetic segmentation for TTS. In: Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, pp. 4533–4536 (2012)
Rybach, D., et al.: The RWTH Aachen university open source speech recognition system. In: Proceedings of Interspeech 2009 (2009)
Stolcke, A., Ryant, N., Mitra, V., Yuan, J., Wang, W., Liberman, M.: Highly accurate phonetic segmentation using boundary correction models and system fusion. In: Proceedings of ICASSP, Florence, Italy (2014)
Toledano, D.T., Gómez, L.A.H., Grande, L.V.: Automatic phoneme segmentation. IEEE Trans. Speech Audio Process. 11(6), 617–625 (2003)
Young, S., et al.: The HTK Book, Version 3.4.1. Cambridge (2009)
Yuan, J., Ryant, N., Liberman, M., Stolcke, A., Mitra, V., Wang, W.: Automatic phonetic segmentation using boundary models. In: Proceedings of INTERSPEECH, Lyon, France, pp. 2306–2310 (2013)
Acknowledgments
The research described in this paper was supported by internal CTU grant SGS17/183/OHK3/3T/13 “Special Applications of Signal Processing”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Mizera, P., Pollak, P. (2018). Automatic Phonetic Segmentation and Pronunciation Detection with Various Approaches of Acoustic Modeling. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-99579-3_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99578-6
Online ISBN: 978-3-319-99579-3
eBook Packages: Computer ScienceComputer Science (R0)