Skip to main content

Automatic Phonetic Segmentation and Pronunciation Detection with Various Approaches of Acoustic Modeling

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11096))

Included in the following conference series:

Abstract

The paper describes HMM-based phonetic segmentation realized by KALDI toolkit with the focus on study of accuracy of various acoustic modeling such as GMM-HMM vs. DNN-HMM, monophone vs. triphone, speaker independent vs. speaker dependent. The analysis was performed using TIMIT database and it proved the contribution of advanced acoustic modeling for the choice of a proper pronunciation variant. For this purpose, the lexicon covering the pronunciation variability among TIMIT speakers was created on the basis of phonetic transcriptions available in TIMIT corpus. When the proper sequence of phones is recognized by DNN-HMM system, more precise boundary placement can be then obtained using basic monophone acoustic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Discussed in KALDI community at https://groups.google.com/forum/#!topic/kaldi-help/cSAm5iXGhZo.

References

  1. CMUSphinx: Open source speech recognition toolkit. http://cmusphinx.github.io

  2. Brunet, R.G., Murthy, H.A.: Pronunciation variation across different dialects for English: a syllable-centric approach. In: 2012 National Conference on Communications (NCC) (2012)

    Google Scholar 

  3. Garofolo, J.S., et al.: TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web download. Linguistic Data Consortium, Philadelphia (1993)

    Book  Google Scholar 

  4. Ghoshal, A., Povey, D.: Sequence-discriminative training of deep neural networks. In: Proceedings of the INTERSPEECH, Lyon, France (2013)

    Google Scholar 

  5. Kahn, A., Steiner, I.: Qualitative evaluation and error analysis of phonetic segmentation. In: 28. Konferenz Elektronische Sprachsignalverarbeitung, Saarbrücken, Germany, pp. 138–144 (2017)

    Google Scholar 

  6. Lee, K.F., Hon, H.W.: Speaker-independent phone recognition using hidden Markov models. IEEE Trans. Audio Speech Lang. Process. 37(11), 1641–1648 (1989)

    Article  Google Scholar 

  7. Matoušek, J., Klíma, M.: Automatic phonetic segmentation using the KALDI toolkit. In: Ekštein, K., Matoušek, V. (eds.) TSD 2017. LNCS (LNAI), vol. 10415, pp. 138–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64206-2_16

    Chapter  Google Scholar 

  8. Matoušek, J., Tihelka, D., Psutka, J.: Experiments with automatic segmentation for Czech speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 287–294. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39398-6_41

    Chapter  Google Scholar 

  9. Mizera, P., Pollak, P., Kolman, A., Ernestus, M.: Impact of irregular pronunciation on phonetic segmentation of Nijmegen corpus of casual Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2014. LNCS (LNAI), vol. 8655, pp. 499–506. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10816-2_60

    Chapter  Google Scholar 

  10. Nouza, J., Silovský, J.: Adapting lexical and language models for transcription of highly spontaneous spoken Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS (LNAI), vol. 6231, pp. 377–384. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15760-8_48

    Chapter  Google Scholar 

  11. Peddinti, V., Wang, Y., Povey, D., Khudanpur, S.: Low latency acoustic modeling using temporal convolution and LSTMs. IEEE Signal Process. Lett. 25(3), 373–377 (2018)

    Article  Google Scholar 

  12. Povey, D., et al.: The Kaldi speech recognition toolkit. In: Proceedings of the IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, ASRU 2011 (2011)

    Google Scholar 

  13. Rendel, A., Sorin, A., Hoory, R., Breen, A.: Toward automatic phonetic segmentation for TTS. In: Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, pp. 4533–4536 (2012)

    Google Scholar 

  14. Rybach, D., et al.: The RWTH Aachen university open source speech recognition system. In: Proceedings of Interspeech 2009 (2009)

    Google Scholar 

  15. Stolcke, A., Ryant, N., Mitra, V., Yuan, J., Wang, W., Liberman, M.: Highly accurate phonetic segmentation using boundary correction models and system fusion. In: Proceedings of ICASSP, Florence, Italy (2014)

    Google Scholar 

  16. Toledano, D.T., Gómez, L.A.H., Grande, L.V.: Automatic phoneme segmentation. IEEE Trans. Speech Audio Process. 11(6), 617–625 (2003)

    Article  Google Scholar 

  17. Young, S., et al.: The HTK Book, Version 3.4.1. Cambridge (2009)

    Google Scholar 

  18. Yuan, J., Ryant, N., Liberman, M., Stolcke, A., Mitra, V., Wang, W.: Automatic phonetic segmentation using boundary models. In: Proceedings of INTERSPEECH, Lyon, France, pp. 2306–2310 (2013)

    Google Scholar 

Download references

Acknowledgments

The research described in this paper was supported by internal CTU grant SGS17/183/OHK3/3T/13 “Special Applications of Signal Processing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Pollak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mizera, P., Pollak, P. (2018). Automatic Phonetic Segmentation and Pronunciation Detection with Various Approaches of Acoustic Modeling. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99579-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99578-6

  • Online ISBN: 978-3-319-99579-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics