Abstract
As the population in developed countries ages, larger numbers of people are at risk of developing dementia. In the near future large-scale time- and cost-efficient screening methods will be needed. Speech can be recorded and analyzed in this manner, and as speech and language are affected early on in the course of dementia, automatic speech processing can provide valuable support for such screening methods.
We have developed acoustic and linguistic features for dementia screening and established that a combination of acoustic and linguistic features provides the best results. However, our full set of 429 fine-grained features from 15 feature types is too large to train a robust model on limited training data. We therefore need to select features to use for dementia screening. We employ forward feature selection nested in a cross-validation and identify the most commonly selected features. Both acoustic and linguistic features from seven different feature types are selected. Using sets of these features we obtain a 0.819 unweighted average recall which is a strong improvement over previous results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appell, J., Kertesz, A., Fisman, M.: A study of language functioning in Alzheimer patients. Brain Lang. 17(1), 73–91 (1982)
Asgari, M., Kaye, J., Dodge, H.: Predicting mild cognitive impairment from spontaneous spoken utterances. Alzheimer’s Dement. Transl. Res. Clin. Interv. 3(2), 219–228 (2017)
Brunet, E.: Le vocabulaire de Jean Giraudoux, structure et évolution. Slatkine, Geneva (1978)
Bucks, R., Singh, S., Cuerden, J.M., Wilcock, G.K.: Analysis of spontaneous, conversational speech in dementia of Alzheimer type: evaluation of an objective technique for analysing lexical performance. Aphasiology 14(1), 71–91 (2000)
Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011)
Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN), Deutsche Gesellschaft für Neurologie (DGN): S3-Leitlinie “Demenzen”. https://www.dgppn.de/_Resources/Persistent/ade50e44afc7eb8024e7f65ed3f44e995583c3a0/S3-LL-Demenzen-240116.pdf (2016). Accessed 16 April 2018
Espinoza-Cuadros, F., et al.: A spoken language database for research on moderate cognitive impairment: design and preliminary analysis. In: Navarro Mesa, J.L., et al. (eds.) IberSPEECH 2014. LNCS (LNAI), vol. 8854, pp. 219–228. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13623-3_23
Hakkani-Tür, D., Vergyri, D., Tür, G.: Speech-based automated cognitive status assessment. In: INTERSPEECH 2010–11th Annual Conference of the International Speech Communication Association, pp. 258–261 (2010)
Hernández-Domínguez, L., García-Cano, E., Ratté, S., Sierra-Martínez, G.: Detection of Alzheimer’s disease based on automatic analysis of common objects descriptions. In: Proceedings of the 7th Workshop on Cognitive Aspects of Computational Language Learning, pp. 10–15 (2016)
Honoré, A.: Some simple measures of richness of vocabulary. Assoc. Literary Linguist. Comput. Bull. 7(2), 172–177 (1979)
Jarrold, W., Peintner, B., Wilkins, D., Vergryi, D., Richey, C., Gorno-Tempini, M.L., Ogar, J.: Aided diagnosis of dementia type through computer-based analysis of spontaneous speech. In: Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 27–37 (2014)
Khodabakhsh, A., Yesil, F., Guner, E., Demiroglu, C.: Evaluation of linguistic and prosodic features for detection of Alzheimer’s disease in Turkish conversational speech. EURASIP J. Audio Speech Music Process. 2015(1), 1–15 (2015)
Lehr, M., Prud’hommeaux, E.T., Shafran, I., Roark, B.: Fully automated neuropsychological assessment for detecting mild cognitive impairment. In: INTERSPEECH 2012–13th Annual Conference of the International Speech Communication Association, pp. 1039–1042 (2012)
Martin, P., Martin, M.: Design und Methodik der Interdisziplinären Längsschnittstudie des Erwachsenenalters. In: Martin, P., Ettrich, K.U., Lehr, U., Roether, D., Martin, M., Fischer-Cyrulies, A. (eds.) Aspekte der Entwicklung im mittleren und höheren Lebensalter: Ergebnisse der Interdisziplinären Längsschnittstudie des Erwachsenenalters (ILSE), pp. 17–27. Steinkopff (2000)
Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count: LIWC 2001. Erlbaum (2001)
Pennebaker, J.W., Graybeal, A.: Patterns of natural language use: disclosure, personality, and social integration. Curr. Dir. Psychol. Sci. 10(3), 90–93 (2001)
Prince, M., Wimo, A., Guerchet, M., Ali, G.C., Wu, Y.T., Prina, M.: World Alzheimer report 2015. The Global Impact of Dementia: an Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer’s Disease International, London (2015)
Prud’hommeaux, E.T., Roark, B.: Extraction of narrative recall patterns for neuropsychological assessment. In: INTERSPEECH 2011–12th Annual Conference of the International Speech Communication Association, pp. 3021–3024 (2011)
Sadeghian, R., Schaffer, J.D., Zahorian, S.A.: Speech processing approach for diagnosing dementia in an early stage. In: INTERSPEECH 2017–18th Annual Conference of the International Speech Communication Association, pp. 2705–2709 (2017)
Satt, A., Hoory, R., König, A., Aalten, P., Robert, P.H.: Speech-based automatic and robust detection of very early dementia. In: INTERSPEECH 2014–15th Annual Conference of the International Speech Communication Association, pp. 2538–2542 (2014)
Sattler, C., Wahl, H.W., Schröder, J., Kruse, A., Schönknecht, P., Kunzmann, U., Braun, T., Degen, C., Nitschke, I., Rahmlow, W., Rammelsberg, P., Siebert, J.S., Tauber, B., Wendelstein, B., Zenthöfer, A.: Interdisciplinary Longitudinal Study on Adult Development and Aging (ILSE), pp. 1213–1222. Springer, Singapore (2017)
Schiller, A., Teufel, S., Stöckert, C.: Guidelines für das Tagging deutscher Textcorpora mit STTS (Kleines und großes Tagset) (1999)
Schmid, H.: Improvements in part-of-speech tagging with an application to German. In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.) Proceedings of the ACL SIGDAT-Workshop, pp. 47–50. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-2390-9_2
Schuller, B., Steidl, S., Batliner, A., Hirschberg, J., Burgoon, J.K., Baird, A., Elkins, A., Zhang, Y., Coutinho, E., Evanini, K.: The INTERSPEECH 2016 computational paralinguistics challenge: deception, sincerity & native language. In: INTERSPEECH 2016–17th Annual Conference of the International Speech Communication Association, pp. 2001–2005 (2016)
Shum, S.H., Dehak, N., Dehak, R., Glass, J.R.: Unsupervised methods for speaker diarization: an integrated and iterative approach. IEEE Trans. Audio Speech Lang. Process. 21(10), 2015–2028 (2013)
Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2009)
Thomas, C., Kes̆elj, V., Cercone, N., Rockwood, K., Asp, E.: Automatic detection and rating of dementia of alzheimer type through lexical analysis of spontaneous speech. In: IEEE International Conference Mechatronics and Automation, vol. 3, pp. 1569–1574 (2005)
Tóth, L., Gosztolya, G., Vincze, V., Hoffmann, I., Szatlóczki, G.: Automatic detection of mild cognitive impairment from spontaneous speech using ASR. In: INTERSPEECH 2015–16th Annual Conference of the International Speech Communication Association, pp. 2694–2698 (2015)
Tweedie, F.J., Baayen, R.H.: How variable may a constant be? Measures of lexical richness in perspective. Comput. Hum. 32(5), 323–352 (1998)
Wankerl, S., Nöth, E., Evert, S.: An analysis of perplexity to reveal the effects of Alzheimer’s disease on language. In: 12th ITG Conference on Speech Communication, pp. 254–258 (2016)
Weiner, J., Engelbart, M., Schultz, T.: Manual and automatic transcription in dementia detection from speech. In: INTERSPEECH 2017–18th Annual Conference of the International Speech Communication Association, pp. 3117–3121 (2017)
Weiner, J., Frankenberg, C., Telaar, D., Wendelstein, B., Schröder, J., Schultz, T.: Towards automatic transcription of ILSE - an interdisciplinary longitudinal study of adult development and aging. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 718–725 (2016)
Weiner, J., Herff, C., Schultz, T.: Speech-based detection of Alzheimer’s disease in conversational German. In: INTERSPEECH 2016–17th Annual Conference of the International Speech Communication Association, pp. 1938–1942 (2016)
Westpfahl, S., Schmidt, T.: Folk-gold - a gold standard for part-of-speech tagging of spoken German. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 1493–1499 (2016)
Wolf, M., Horn, A.B., Mehl, M.R., Haug, S., Pennebaker, J.W., Kordy, H.: Computergestützte quantitative textanalyse. Diagnostica 54(2), 85–98 (2008)
Zhou, L., Fraser, K.C., Rudzicz, F.: Speech recognition in Alzheimer’s disease and in its assessment. In: INTERSPEECH 2016–17th Annual Conference of the International Speech Communication Association, pp. 1948–1952 (2016)
Acknowledgments
We thank Johannes Schröder at the University of Heidelberg and the University Hospital Heidelberg, Germany for providing us with the ILSE data and for sharing with us his expertise on speech and language use of people with dementia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Weiner, J., Schultz, T. (2018). Selecting Features for Automatic Screening for Dementia Based on Speech. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_76
Download citation
DOI: https://doi.org/10.1007/978-3-319-99579-3_76
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99578-6
Online ISBN: 978-3-319-99579-3
eBook Packages: Computer ScienceComputer Science (R0)