
Path Finding for the Coalition of Co-operative
Agents Acting in the Environment with

Destructible Obstacles

Anton Andreychuk1,2 and Konstantin Yakovlev1,3

1 Federal Research Center “Computer Science and Control” of Russian Academy of
Sciences, Moscow, Russia

2 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
3 National Research University Higher School of Economics (NRU HSE), Moscow,

Russia
andreychuk@mail.com, yakovlev@isa.ru

Abstract. The problem of planning a set of paths for the coalition of
robots (agents) with different capabilities is considered in the paper.
Some agents can modify the environment by destructing the obstacles
thus allowing the other ones to shorten their paths to the goal. As a
result the mutual solution of lower cost, e.g. time to completion, may be
acquired. We suggest an original procedure to identify the obstacles for
further removal that can be embedded into almost any heuristic search
planner (we use Theta*) and evaluate it empirically. Results of the eval-
uation show that time-to-complete the mission can be decreased up to
9-12 % by utilizing the proposed technique.

Keywords: path planning · path finding · grid · coalition of agents ·
co-operative agents · co-operative path planning · multi-agent systems

1 Introduction

Path planning for a point robot is usually considered in Artificial Intelligence
and robotics as a task of finding a path on the graph whose nodes correspond
to the positions the robot (agent) can occupy, and edges – possible transitions
between them. Voronoi diagrams [8], visibility graphs [9], grids [19] are the most
widespread graphs used for path finding, with grids being the most simple and
easy-to-construct discretizations of the workspace. To find a path on a grid
typically one of the algorithms from A* family is used. A* [5] is a heuristic
search algorithm that searches in state-space comprised of the elements (nodes)
corresponding to certain graph vertices (grid cells or corners). There exist various
modifications of A* that are suitable for grid-based path finding. In this work we
utilize so-called any-angle path finders that do not constrain agent’s moves to
cardinal and diagonal ones only but rather allow to move into arbitrary direction
as long as the endpoints of the move are tied to distinct grid elements. Among
such algorithms Theta* [2], Field D* [3], Anya [4], etc., can be named.

ar
X

iv
:1

80
7.

00
77

1v
1

 [
cs

.A
I]

 2
 J

ul
 2

01
8

2 Andreychuk A. and Yakovlev K.

Abovementioned algorithms can not be directly applied to multi-robot path
planning which is gaining more and more attention nowadays due to numerous
applications in transport [10], logistics [17], agriculture [14], military [7] and
other domains, but they can be modified to become base blocks of multi-agent
path finders such as CBS [13], M* [15], MAPP [16], [1], AA-SIPP(m) [18], etc.
Typically those planners consider the interaction between the robots only spatial-
wise by taking into account possible collisions and avoiding them.

In this work we investigate the case when robots can interact and co-operate
by performing not only move-or-wait actions but modify-the-environment ac-
tions as well. This is similar to integration of task and motion planning [6], but
unlike other researchers in this field we do not concentrate on task planning
with grasping the objects, which is a typical scenario, but rather on task plan-
ning with path finding. The approach we suggest can be of particular interest to
solving so-called smart relocation tasks [11], [12] when the mission can not be
accomplished without the robots helping each other.

2 Problem statement

Consider a coalition of heterogeneous robots that need to reach their respective
goals in static, a-priory known environment, represented as a grid, composed of
blocked and un-blocked cells. Without loss of generality we examine the case
when only two heterogeneous robots, e.g. an UAV and a wheeled robot, are
considered. The UAV can move directly to its goal, e.g. fly above all the obstacles,
while the wheeled robot must circumnavigate them. An example of a modeled
scenario is presented in Fig.1.

Fig. 1. Heterogeneous group of mobile robots in a grid-world. Locations of the robots
are tied to the centers of un-blocked grid cells. Flying robot can move directly to the
goal flying above the obstacles, while wheeled robot has to circumnavigate them.

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

Path Finding for the Coalition of Co-operative Agents ... 3

The robots are different not only in the way they move, but they also may
perform different set of actions. Wheeled robot can perform only move actions
while UAV can destroy obstacles as well (at no cost). In order to do so it must first
approach them. The problem now is to obtain coordinated mission completion
plan composed of two sub-plans: one per each robot.The cost of the individual
plan is the time needed to traverse the planned path, which is proportional to
its length, so, without loss of generality the individual cost is the length of the
path. Two metrics to measure the overall cost are considered, e.g. the flowtime
(the sum of path lengths) and the makespan (maximum over path lenghts). We
are interested in getting such solutions that have lower cost compared to the
case when path planning is conducted independently by the robots. For the rest
of the paper we assume that x- and y-coordinates of the start and goals location
of two robots are equal, e.g. the UAV is hovering above the wheeled robot and
its (x, y) goal location is the same. We will refer to the wheeled robot as to the
first agent and to the UAV as to the second one.

3 Method

To decrease the cost of the initial non-cooperative solution one need to a) identify
the obstacles that force the second agent to deviate from the shortest possible,
e.g. straight-line, path to its goal; b) modify the original straight-line path of
the second agent in such a way that it approaches each identified obstacle (thus
destroying it); c) re-plan a path for the first agent. Also a grid pre-processing
is needed in order to assign the unique identifiers to all the obstacles in the
environment. This is done trivially by traversing the grid cells one by one, and
every time a blocked cell is found, all adjacent blocked ones are traversed and
assigned with a unique identifier.

After finding and identifying all the obstacles on the grid, the trajectory for
the first agent is planned using the modified heuristic search algorithm Theta*,
which pseudocode is given in Algorithm 1. Besides finding the path the algorithm
identifies obstacles whose removal can potentially shorten the length of such
path. Detailed description of Theta* can be found in [2]. We reference the reader
to this paper for details and now proceed with the description of the proposed
modifications. One of such modifications is that an additional data structure,
obstacles, is introduced (lines 3-4) that stores the number of times each obstacle
was hit during the search. Main loop is similar to the original Theta*, e.g. on each
step the most promising state is retrieved and its successors are generated. These
successors correspond to moves from the current cells to the neighbouring grid
ones. If the move is infeasible due to the target cell being blocked it is discarded
(as in conventional heuristic search path planner), but we also count the number
of such blocked cells in lines 11-13. Thus, when the algorithm terminates, one
obtains not only the information about whether the path was found or not1, but

1 The path itself can be reconstructed by iteratively tracing backpointers from goal
vertex until start is reached.

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

4 Andreychuk A. and Yakovlev K.

also the information about how many times the path-finder attempted to move
through the particular obstacles.

Algorithm 1: Theta* with counting interfering obstacles

1 parent(sstart) := sstart; g(sstart) := 0;
2 OPEN := {sstart}; CLOSED := ∅;
3 for each obstacle on grid as o do
4 obstacles(o) := 0;

5 while OPEN 6= ∅ do
6 s := state with minimal f -value from OPEN ;
7 remove s from OPEN and add to CLOSED;
8 if s = goal then
9 return obstacles and ”path found”;

10 for each state in neighbours(s) as s′ do
11 if s′ is blocked then
12 obstacles(getObstacleAt(s′))++;
13 continue;

14 if s′ /∈ CLOSED then
15 if s′ /∈ OPEN then
16 g(s′) :=∞;

17 updateVertex(s, s’);

18 return obstacles and ”path not found”;

19 Function updateVertex(s, s’)
20 if lineOfSight(parent(s), s’) then
21 s := parent(s);

22 if g(s) + c(s, s′) < g(s′) then
23 g(s′) := g(s) + c(s, s′);
24 f(s′) := g(s′) + h(s′);
25 parent(s′) := s;
26 insert/update s′ in OPEN ;

Obviously, if the vertices (cells) of the obstacle o have never been considered
during the search, e.g. obstacles(o) is equal to 0, then this obstacle has no in-
fluence on robot’s mission. If obstacles(o) > 0 then removing o might lead to
a potentially shorter path. Thus, a simple criterion for removing an obstacle is
suggested: o = argmaxo∈Obstacles(obstacles(o)), where Obstacles stands for all
obstacles on a grid. If it is possible to remove n obstacles, then n first ones with
the largest values of obstacles(o) are selected.

After the obstacles are chosen, one needs to construct a trajectory for the
second agent (flying robot), such that it passes through the vertices that are ad-
jacent to the chosen obstacles. In case only one obstacle o is going to be removed,

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

Path Finding for the Coalition of Co-operative Agents ... 5

the shortest path for the second agent can be found as follows. The distances
from each cell comprising the boundary of o to start and goal are calculated and
such cell, c, is chosen that minimizes the distance dist(start, c) + dist(c, goal),
see Fig.2b. This cell is used to form a path [start, c, goal] . If more than one
obstacle is going to be removed, such an approach becomes computationally
burdensome. Instead, we suggest another procedure that does not guarantee
finding the shortest path, but works much faster.

Obviously, the shortest path from start to goal is the straight line segment
connecting them 〈start, goal〉. Thus to minimize the length of the path that
needs to pass through the vertices adjacent to the obstacles being removed, this
path should be as close to this segment as possible. Therefore for each of the
removing obstacles o we look for such vertex (residing at the boundary of o) that
minimizes the distance to 〈start, goal〉 segment. After all, the sought path for
the second agent is constructed by aligning these vertices in order of increasing
distance from start.

Fig. 2. Robots’ paths before and after removing the obstacle. a) initial paths for the
ground robot and for the UAV (shown in blue and orange respectively) ; b) boundary
of the obstacle to be removed (shown in bold) and the cell c on this boundary that
minimizes dist(start, c) + dist(c, goal); c) paths after removing the obstacle.

An example of removing an obstacle and re-planning paths for both agents
is presented in Fig.2. As one can see the path for the flying robot (marked
in orange) is almost un-affected, while the path for the ground robot (marked
in blue) becomes significantly shorter, which means that time-to-complete the
mission lowers down.

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

6 Andreychuk A. and Yakovlev K.

4 Experimental evaluation

Described methods and algorithms were implemented in C++2 and evaluated
on a PC of the following configuration: OS - Windows 7, CPU - Intel Q8300
(2.5GHz), RAM - 2 GB. Descriptions of the real-world urban areas were ex-
tracted from OpenStreetMaps and used as the input. 100 maps each being
1.2x1.2 km in size were transformed into 501x501 grids with blocked cells cor-
responding to buildings. Initially 200 instances per each grid were generated in
such a way that the distance between the start and goal locations exceeded 960
meters (400 cells). Then the instances for which the length of the trajectory
found by the original Theta* algorithm differed from the straight-line distance
by no more than 10% were discarded. Thus, a total of 1457 instances formed the
resultant input.

To guide the search of the proposed modification of Theta* both un-weighted
and weighted heurisic (Euclidean distance) was used, e.g. heuristic weight was
set eiter to 1 (w = 1) or to 2 (w = 2). Using weighted heuristic makes the
algorithm ”greedy”, i.e. more focused on the goal, as a result, it spends less time
(and memory) to find a solution. The number of removed obstacles varied from
1 to 5. The following performance indicators were tracked:

1) Path A – path length of the first agent (i.e., of the agent that does not
have the ability to modify the environment – ground robot).

2) Number of nodes – number of vertices that were processed and stored in
memory in order to build path for the first agent. This indicator directly relates
to memory consumption (the more vertices are stored the more memory is used).

3) Time – runtime of the algorithm (excluding overheads, such as loading a
map, saving a result, etc.).

4) Path B – path length of the second agent (i.e., of the agent that has the
ability to modify the environment – flying robot).

These indicators were tracked both before and after the modification of the
environment. The results of the conducted experiments are as follows.

Fig.3 shows the average memory consumption after the first stage of planning
(Stage 1), as well as after modifying the grid and removing the corresponding
number of obstacles (Obs = 1, ..., Obs = 5). Left five columns correspond to the
results obtained by the algorithm with un-weighted heuristic function (w = 1),
while right 5 columns were gained with heuristic weight set to 2. One can note
that removing obstacles leads to a notable reduction in the number of vertices
processed by the path planning algorithm. If un-weighted heuristic is used (w =
1) than the memory consumption is reduced up to 30%, moreover if the weighted
heuristic function is utilized (w = 2) – this consumption is reduced up to 65%.

Similar claims can be done w.r.t. runtime – see Fig.4 for details. This fig-
ure shows the average amount of time which the algorithm spends to find the
trajectories for both agents. Similarly to memory consumption, the runtime de-

2 Source code is available at https://github.com/PathPlanning/
AStar-JPS-ThetaStar/tree/destroy obs and replan

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

https://github.com/PathPlanning/AStar-JPS-ThetaStar/tree/destroy_obs_and_replan
https://github.com/PathPlanning/AStar-JPS-ThetaStar/tree/destroy_obs_and_replan

Path Finding for the Coalition of Co-operative Agents ... 7

Fig. 3. Memory consumption (number of processed nodes) before and after removing
the obstacles.

creases when the number of removed obstacles increases. For w = 1 the runtime
is reduced up to 29.8%, and for w = 2 – up to 71%.

Fig. 4. Planning time before and after removing the obstacles.

To evaluate the quality of obtained solutions the following metrics were used:

- flowtime also known as sum-of-costs (SoC) – the sum of the lengths of
individual trajectories;

- makespan – the maximum length of an individual trajectory.

Assuming that both agents move with identical speeds, the first metrics re-
flects the aggregate time-cost, associated with the mission; the second one shows
when the last robot reaches its goal, so it can be seen as time to complete a mis-
sion.

Before analyzing SoC and makespan let’s look at the path lengths (averages)
of both agents before and after obstacle removal – see Fig.5.

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

8 Andreychuk A. and Yakovlev K.

Fig. 5. Path lengths of both agents before and after removing the obstacles.

As can be seen, obstacle removal positively affects the path length of the first
agent, but negatively affects the path length of the second one. So it’s natural
to assume that the number of removed obstacles should not be nor low nor high
if one wants to reduce SoC and/or makespan.

Fig. 6. Sum-of-costs before and after removing the obstacles.

Averaged SoC is depicted on Fig.6. Analyzing this chart, one can claim that
removing 2-3 obstacles leads to the best result, but percentage-wise the difference
in SoC is not impressive (reduction by 3-5%). This might be due to the input
data and we believe that for other environments, e.g. maze-like environments or
the ones with spiral-shaped obstacles, the reduction might be more notable.

Average normalized values of makespan are shown on Fig.7. We took the
straight-line distance between the start and goal for 100%. As one can see, re-
moving 3-4 obstacles (5, if weighted heuristics is used) leads to the best perfor-

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

Path Finding for the Coalition of Co-operative Agents ... 9

Fig. 7. Normalized makespan before and after removing the obstacles.

mance. Time to complete the mission (e.g. makespan) reduces by 9-12% is such
cases, which is a notable reduction for numerous real-world applications.

5 Conclusion

We proposed an approach to plan a set of trajectories for the coalition of co-
operative agents operating in the environment that can be modified by the ac-
tions of coalition members, e.g. some obstacles can be destroyed. The approach
is based on the well-known heuristic search path planner, e.g. Theta*, as well as
on a novel technique tailored to identify obstacles that obscure the path and thus
should be potentially destroyed. Conducted experimental evaluation has shown
that the suggested approach positively affects the solution quality, e.g. mission
completion time (makespan) for the considered class of problems (navigation of
ground and flying robots in urban environments).

6 Acknowledgements

This work was supported by the “RUDN University Program 5-100” (extracting
data from OpenStreetMaps to conduct the experiments) and by the RSF project
#16-11-00048 (developing path planning methods and evaluating them).

References

1. Andreychuk, A., Yakovlev, K.: Applying MAPP algorithm for cooperative path
finding in urban environments. Ronzhin A., Rigoll G., Meshcheryakov R. (eds)
Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science
10459, 1–10 (2017)

2. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: Any-angle path planning on
grids. Journal of Artificial Intelligence Research 39, 533–579 (2010)

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

10 Andreychuk A. and Yakovlev K.

3. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: The field
D* algorithm. Journal of Field Robotics 23(2), 79–101 (2006)

4. Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in
practice. Journal of Artificial Intelligence Research 56, 89–118 (2016)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

6. Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical task and motion planning in the
now. In: Robotics and Automation (ICRA), 2011 IEEE International Conference
on. pp. 1470–1477. IEEE (2011)

7. Khachumov, M., Khachumov, V.: The problem of target capturing by a group of
unmanned flight vehicles under wind disturbances. In: Computer Technology and
Applications (RPC), 2017 Second Russia and Pacific Conference on. pp. 90–95.
IEEE (2017)

8. Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: Guaran-
teed safety for obstacle avoidance. Ronzhin A., Rigoll G., Meshcheryakov R. (eds)
Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science
10459, 123–133 (2017)

9. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)

10. Morris, R., Pasareanu, C.S., Luckow, K.S., Malik, W., Ma, H., Kumar, T.S.,
Koenig, S.: Planning, scheduling and monitoring for airport surface operations.
In: AAAI Workshop: Planning for Hybrid Systems (2016)

11. Panov, A.I., Yakovlev, K.: Behavior and path planning for the coalition of cognitive
robots in smart relocation tasks. In: Robot Intelligence Technology and Applica-
tions 4, pp. 3–20. Springer (2017)

12. Panov, A.I., Yakovlev, K.S.: Psychologically inspired planning method for smart
relocation task. Procedia Computer Science 88, 115–124 (2016)

13. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for opti-
mal multi-agent pathfinding. Artificial Intelligence 219, 40–66 (2015)

14. Vu, Q., Nguyen, V., Solenaya, O., Ronzhin, A.: Group control of heterogeneous
robots and unmanned aerial vehicles in agriculture tasks. Ronzhin A., Rigoll G.,
Meshcheryakov R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture
Notes in Computer Science 10459, 260–267 (2017)

15. Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with
performance bounds. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. pp. 3260–3267. IEEE (2011)

16. Wang, K.H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm
with tractability and completeness guarantees. Journal of Artificial Intelligence
Research 42, 55–90 (2011)

17. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI magazine 29(1), 9 (2008)

18. Yakovlev, K., Andreychuk, A.: Any-angle pathfinding for multiple agents based on
SIPP algorithm. In: Proceedings of the 27th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2017). pp. 586–594. AAAI Press (2017)

19. Yap, P.: Grid-based path-finding. In: Conference of the Canadian Society for Com-
putational Studies of Intelligence. pp. 44–55. Springer (2002)

Pre-print of the paper accepted to The 3rd International Conference on
Interactive Collaborative Robotics (ICR 2018)

	Path Finding for the Coalition of Co-operative Agents Acting in the Environment with Destructible Obstacles

