Skip to main content

Path Finding for the Coalition of Co-operative Agents Acting in the Environment with Destructible Obstacles

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11097))

Included in the following conference series:

  • 1508 Accesses

Abstract

The problem of planning a set of paths for the coalition of robots (agents) with different capabilities is considered in the paper. Some agents can modify the environment by destructing the obstacles thus allowing the other ones to shorten their paths to the goal. As a result the mutual solution of lower cost, e.g. time to completion, may be acquired. We suggest an original procedure to identify the obstacles for further removal that can be embedded into almost any heuristic search planner (we use Theta*) and evaluate it empirically. Results of the evaluation show that time-to-complete the mission can be decreased up to 9–12 % by utilizing the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The path itself can be reconstructed by iteratively tracing backpointers from goal vertex until start is reached.

  2. 2.

    Source code is available at https://github.com/PathPlanning/AStar-JPS-ThetaStar/tree/destroy_obs_and_replan

References

  1. Andreychuk, A., Yakovlev, K.: Applying MAPP algorithm for cooperative path finding in urban environments. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_1

    Chapter  Google Scholar 

  2. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: the field D* algorithm. J. Field Robot. 23(2), 79–101 (2006)

    Article  Google Scholar 

  4. Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in practice. J. Artif. Intell. Res. 56, 89–118 (2016)

    Article  MathSciNet  Google Scholar 

  5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  6. Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical task and motion planning in the now. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1470–1477. IEEE (2011)

    Google Scholar 

  7. Khachumov, M., Khachumov, V.: The problem of target capturing by a group of unmanned flight vehicles under wind disturbances. In: 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC), pp. 90–95. IEEE (2017)

    Google Scholar 

  8. Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: guaranteed safety for obstacle avoidance. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 123–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_14

    Chapter  Google Scholar 

  9. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  10. Morris, R., et al.: Planning, scheduling and monitoring for airport surface operations. In: AAAI Workshop: Planning for Hybrid Systems (2016)

    Google Scholar 

  11. Panov, A.I., Yakovlev, K.: Behavior and path planning for the coalition of cognitive robots in smart relocation tasks. In: Kim, J.-H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. AISC, vol. 447, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31293-4_1

    Chapter  Google Scholar 

  12. Panov, A.I., Yakovlev, K.S.: Psychologically inspired planning method for smart relocation task. Procedia Comput. Sci. 88, 115–124 (2016)

    Article  Google Scholar 

  13. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  14. Vu, Q., Nguyen, V., Solenaya, O., Ronzhin, A.: Group control of heterogeneous robots and unmanned aerial vehicles in agriculture tasks. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 260–267. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_28

    Chapter  Google Scholar 

  15. Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3260–3267. IEEE (2011)

    Google Scholar 

  16. Wang, K.H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. 42, 55–90 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)

    Google Scholar 

  18. Yakovlev, K., Andreychuk, A.: Any-angle pathfinding for multiple agents based on SIPP algorithm. In: Proceedings of the 27th International Conference on Automated Planning and Scheduling (ICAPS 2017), pp. 586–594. AAAI Press (2017)

    Google Scholar 

  19. Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS (LNAI), vol. 2338, pp. 44–55. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47922-8_4

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the “RUDN University Program 5–100” (extracting data from OpenStreetMaps to conduct the experiments) and by the RSF project #16-11-00048 (developing path planning methods and evaluating them).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Andreychuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreychuk, A., Yakovlev, K. (2018). Path Finding for the Coalition of Co-operative Agents Acting in the Environment with Destructible Obstacles. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics