Skip to main content

Current Control in the Drives of Dexterous Robot Grippers

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11097))

Included in the following conference series:

Abstract

At present, the actuality of improving approaches to the creation of dexterous gripper for robots with force controls and their control algorithms is growing due to the need to develop areas of robotics related to the manipulation of fragile objects, interaction with people, prosthetics and rehabilitation robotics. The force control in the dexterous grippers of robots using an electric drive is provided by current control. Therefore, the purpose of this article is to consider various current regulators in the context of their application in dexterous grippers and manipulators with the force control. PI, adaptive, relay and relay, with adjustment of the hysteresis loop, current regulators are compared in such characteristics as transient response, accuracy, robustness, switching losses and switching frequency stability. The article proposes a new method for synthesizing hysteresis regulators with the adjustment of the hysteresis loop, which assumes the use of standard frequency synthesis of control systems with feedback. The proposed method extends such quality parameters as stability stocks, transient time, cutoff frequency to the adjustment loop. The considered hysteresis controller with the adjustment loop, in contrast to the classical hysteresis regulator, ensures the stabilization of the switching frequency and the reduction of the current pulsations in the motor driver. The article also presents the results of the two-finger gripper force control with the use of various current regulators for the chosen law of forces distribution between the drives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malchikov, A., Yatsun, A., Bezmen, P., Tarasov, O.: Control features of the electromechanical system with end-effector considering the regulated torque. In: MATEC Web of Conferences. EDP Sciences, vol. 113, pp. 1–5 (2017)

    Google Scholar 

  2. Mesherayakov V., Voekov V., Ivashkin V.: Designing the universal vector control system with relay current regulator principle for general purpose industrial AC motor drive control. In: IEEE International Power Electronics and Motion Control Conference (PEMC), pp. 680–685 (2016)

    Google Scholar 

  3. Blejz, E.S., Brodovskij, V.N., Vvedenskij, V.A.: Sledyashhie privody. In: CHemodanov, B.K. (eds.) 2nd edn. Publishing house Bauman MSTU, Moscow (2003) (in Russian)

    Google Scholar 

  4. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dutta, K., Puthra, P.P., Das, P.K.: Constant torque angle controlled permanent magnet synchronous motor drive using hysteresis band current controller. In: 2016 7th India International Conference on Power Electronics (IICPE), pp. 1–5. IEEE (2016)

    Google Scholar 

  6. Poonia, A., Dey, A.: Space phasor based improved hysteresis current controller for shunt active power filter using 3-level inverter. In: 2016 18th European Conference on Power Electronics and Applications (EPE 2016 ECCE Europe), pp. 1–10. IEEE (2016)

    Google Scholar 

  7. Priandana, E.R., Saputra, M., Prabowo, Y., Dahono, P.: Analysis and design of variable double-band hysteresis current controller for single-phase full-bridge bidirectional converters. In: 2014 International Symposium on Technology Management and Emerging Technologies (ISTMET), pp. 143–148. IEEE (2014)

    Google Scholar 

  8. Putri, A.I., Rizqiawan, A., Rozzi, F., Zakkia, N., Haroen, Y., Dahono, P.A.: A hysteresis current controller for grid-connected inverter with reduced losses. In: International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE), pp. 167–170. IEEE (2016)

    Google Scholar 

  9. Gobbi, R., Ramar, K.: Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors. IET Electr. Power Appl. 3(5), 453–460 (2009)

    Article  Google Scholar 

  10. Kurian, S., Nisha, G.K.: Torque ripple minimization of SRM using torque sharing function and hysteresis current controller. In: 2015 International Conference on Control Communication & Computing India (ICCC), pp. 149–154. IEEE (2015)

    Google Scholar 

  11. Muralidhar, J.E., Aranasi, P.V.: Torque ripple minimization & closed loop speed control of BLDC motor with hysteresis current controller. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–7. IEEE (2014)

    Google Scholar 

  12. Shi, T., Niu, L., Li, W.: Torque-ripple minimization in switched reluctance motors using sliding mode variable structure control. In: 2010 29th Chinese Control Conference (CCC), pp. 332–337. IEEE (2010)

    Google Scholar 

  13. Kolokolov, Y.V., Tej, D.O.: Dinamika relejno-impul’snykh regulyatorov peremennogo toka s adaptatsiej gisterezisa. Vestnik YUgorskogo gosudarstvennogo universiteta 3(22) (2011). (in Russian)

    Google Scholar 

  14. Serebrennyj, V.V., Boshlyakov, A.A., Ogorodnik, A.I.: Relejnye regulyatory toka ehlektroprivodov s adaptatsiej shiriny petli gisterezisa. Desyataya vserossijskaya mul’tikonferentsiya po problemam upravleniya (MKPU-2017), pp. 177–180 (2017). (in Russian)

    Google Scholar 

  15. Suru, C.V., Dobriceanu, M., Subtirelu, G.E.: Direct current control by constant frequency hysteresis controller in active filtering systems. In: 2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE), pp. 1–6. IEEE (2017)

    Google Scholar 

  16. Dudkin, M.M., Brylina, O.G., TSytovich, L.I., Tyugaev, A.V.: CHastotno-shirotnoimpul’snyj adaptivnyj regulyator peremennogo napryazheniya s integriruyushhej sistemoj upravleniya. Vestnik YUzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: EHnergetika, vol. 13(2), pp. 45–52 (2013) (in Russian)

    Google Scholar 

  17. Panda, G., Dash, S.K., Sahoo, N.: Comparative performance analysis of Shunt Active power filter and Hybrid Active Power Filter using FPGA-based hysteresis current controller. In: 2012 IEEE 5th India International Conference on Power Electronics (IICPE), pp. 1–6. IEEE (2012)

    Google Scholar 

  18. Talib, M.H.N., Isa, S.N.M., Hamidon, H.E., Ibrahim, Z., Rasin, Z.: Hysteresis current control of induction motor drives using dSPACE DSP controller. In: 2016 IEEE International Conference on Power and Energy (PECon), pp. 522–527. IEEE (2016)

    Google Scholar 

  19. Tabatabaei, H., Fathi, S.H., Jedari, M.: A comparative study between conventional and fuzzy logic control for APFs by applying adaptive hysteresis current controller. In: 2017 Iranian Conference on Electrical Engineering (ICEE), pp. 1313–1318. IEEE (2017)

    Google Scholar 

  20. Uddin, M.N., Rebeiro, R.S.: Fuzzy logic based speed controller and adaptive hysteresis current controller based IPMSM drive for improved dynamic performance. In: 2011 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 1–6. IEEE (2011)

    Google Scholar 

  21. Nakashima Y., Ando T., Kobayashi Y., Fujie M.: Gait-controlled mobility-aid robot: treadmill motor current based anteroposterior force estimation using frictional model reflects characteristics of ground reaction force. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1305–1310. IEEE (2012)

    Google Scholar 

  22. Aghili, F.: Fault-tolerant torque control of BLDC motors. IEEE Trans. Power Electron. 26(2), 355–363 (2011)

    Article  Google Scholar 

  23. Pavlyuk, N.A., Ronzhin, A.L.: Konstruktivnye resheniya nizhnih konechnostej dlya antropomorfnogo robota Antares. EHkstremal’naya robototekhnika, 1(1), 422–427 (2016). (in Russian)

    Google Scholar 

  24. Pavlyuk, N.A., Budkov, V.Y., Bizin, M.M., Ronzhin, A.L.: Razrabotka konstrukcii uzla nogi antropomorfnogo robota ANTARES na osnove dvuhmotornogo kolena. Izvestiya YUzhnogo federal’nogo universiteta. Tekhnicheskie nauki, 1(174), 227–239 (2016). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ogorodnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serebrennyj, V., Boshlyakov, A., Ogorodnik, A. (2018). Current Control in the Drives of Dexterous Robot Grippers. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2018. Lecture Notes in Computer Science(), vol 11097. Springer, Cham. https://doi.org/10.1007/978-3-319-99582-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99582-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99581-6

  • Online ISBN: 978-3-319-99582-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics