Abstract
Due to the broad use of deep learning methods in Bioimaging, it seems convenient to create a framework that facilitates the task of analysing different models and selecting the best one to solve each particular problem. In this work-in-progress, we are developing a Python framework to deal with such a task in the case of bioimage classification. Namely, the purpose of the framework is to automate and facilitate the process of choosing the best combination of feature extractors (obtained from transfer learning and other techniques), and classification models. The features and models to test are fixed by a simple configuration file to facilitate the use of the framework by non-expert users. The best model is automatically selected through a statistical study, and then it can be employed to predict the category of new images.
This work was partially supported by Ministerio de Economía, Industria y Competitividad [MTM2014-54151-P, MTM2017-88804-P], and Agencia de Desarrollo Económico de La Rioja [ADER-2017-I-IDD-00018].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation (2015). http://arxiv.org/abs/1505.04597
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017)
Nauman, M., Ur Rehman, H., Politano, G., Benso, A.: Beyond Homology Transfer: Deep Learning for Automated Annotation of Proteins. bioRxiv (2017). https://www.biorxiv.org/content/early/2017/07/25/168120
Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier selection for non-experts. Pattern Anal. Appl. 17(1), 83–96 (2012)
Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I.H.: Interactive machine learning: letting users build classifiers. Int. J. Hum. Comput. Stud. 55(3), 281–292 (2001)
Google: Google cloud automl (2018). https://cloud.google.com/automl/
Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2011)
Intel: Opencv (2016). https://opencv.org/
Chollet, F., et al.: Keras (2017). https://keras.io/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
García, M., Domínguez, C., Heras, J., Mata, E., Pascual, V. (2019). An On-Going Framework for Easily Experimenting with Deep Learning Models for Bioimaging Analysis. In: Rodríguez, S., et al. Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference. DCAI 2018. Advances in Intelligent Systems and Computing, vol 801. Springer, Cham. https://doi.org/10.1007/978-3-319-99608-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-99608-0_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99607-3
Online ISBN: 978-3-319-99608-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)