Abstract
A failure detection system is the first step towards predictive maintenance strategies. A popular data-driven method to detect incipient failures and anomalies is the training of normal behaviour models by applying a machine learning technique like feed-forward neural networks (FFNN) or extreme learning machines (ELM). However, the performance of any of these modelling techniques can be deteriorated by the unexpected rise of non-stationarities in the dynamic environment in which industrial assets operate. This unpredictable statistical change in the measured variable is known as concept drift. In this article a wind turbine maintenance case is presented, where non-stationarities of various kinds can happen unexpectedly. Such concept drift events are desired to be detected by means of statistical detectors and window-based approaches. However, in real complex systems, concept drifts are not as clear and evident as in artificially generated datasets. In order to evaluate the effectiveness of current drift detectors and also to design an appropriate novel technique for this specific industrial application, it is essential to dispose beforehand of a characterization of the existent drifts. Under the lack of information in this regard, a methodology for labelling concept drift events in the lifetime of wind turbines is proposed. This methodology will facilitate the creation of a drift database that will serve both as a training ground for concept drift detectors and as a valuable information to enhance the knowledge about maintenance of complex systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance (2006). https://doi.org/10.1016/j.ymssp.2005.09.012
Heng, A., Zhang, S., Tan, A.C.C., Mathew, J.: Mech. Syst. Signal Process. 23(3), 724 (2009). https://doi.org/10.1016/j.ymssp.2008.06.009
Zio, E., Kadry, S.: Diagnostics and prognostics of engineering systems: methods and techniques, pp. 333–356 (2012). https://doi.org/10.4018/978-1-4666-2095-7.ch017>
Vichare, N.M., Pecht, M.G.: IEEE Trans. Compon. Packag. Technol. 29(1), 222 (2006). https://doi.org/10.1109/TCAPT.2006.870387
Cheng, S., Azarian, M.H., Pecht, M.G.: Sensor systems for prognostics and health management (2010). https://doi.org/10.3390/s100605774
Salfner, F., Lenk, M., Malek, M.: ACM Comput. Surv. 42(3), 1 (2010). https://doi.org/10.1145/1670679.1670680
Yang, W., Court, R., Jiang, J.: Renew. Energy 53, 365 (2013). https://doi.org/10.1016/j.renene.2012.11.030
Sheng, S., Veers, P.: Machinery Failure Prevention Technology (MFPT): The Applied Systems Health Management Conference 2011, vol. 2, p. 5, October 2011
Al-Turki, U.M., Ayar, T., Yilbas, B.S., Sahin, A.Z.: SpringerBriefs in Applied Sciences and Technology, pp. i–iv (2014). https://doi.org/10.1007/978-3-319-06290-7
Kubat, M.: Knowl. Eng. Rev. 13(4), S0269888998214044 (1999). https://doi.org/10.1017/S0269888998214044
Liu, Z., Gao, W., Wan, Y.H., Muljadi, E.: IEEE Energy Conversion Congress and Exposition (ECCE) (August), 3154 (2012). https://doi.org/10.1109/ECCE.2012.6342351
Pelletier, F., Masson, C., Tahan, A.: Renew. Energy 89, 207 (2016). https://doi.org/10.1016/j.renene.2015.11.065
Qian, P., Ma, X., Wang, Y.: Autom. Comput. (ICAC) 11 (2015). https://doi.org/10.1109/IConAC.2015.7313974
Qian, P., Ma, X., Zhang, D.: Energies 10(10), 1583 (2017). https://doi.org/10.3390/en10101583
Saavedra-Moreno, B., Salcedo-Sanz, S., Carro-Calvo, L., Gascón-Moreno, J., Jiménez-Fernández, S., Prieto, L.: J. Wind Eng. Ind. Aerodyn. 116, 49 (2013). https://doi.org/10.1016/j.jweia.2013.03.005
Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P.: IEEE Trans. Power Syst. 29(3), 1033 (2014). https://doi.org/10.1109/TPWRS.2013.2287871
Garcia, M.C., Sanz-Bobi, M.A., del Pico, J.: Comput. Ind. 57(6), 552 (2006). https://doi.org/10.1016/j.compind.2006.02.011
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: ACM Comput. Surv. 46(4), 1 (2014). https://doi.org/10.1145/2523813
Žliobaite, I.: International Conference on Machine Learning, pp. 1009–1017 (2010). https://doi.org/10.1002/sam
Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Data Mining Knowl. Discov. 30(4), 964 (2016). https://doi.org/10.1007/s10618-015-0448-4
Tsymbal, A.: Computer Science Department, Trinity College Dublin 4(C), 2004 (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.9085
Hoens, T.R., Polikar, R., Chawla, N.V.: Prog. Artif. Intell. 1(1), 89 (2012). https://doi.org/10.1007/s13748-011-0008-0
Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey (2015). https://doi.org/10.1109/MCI.2015.2471196
Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Inf. Fusion 37, 132 (2017). https://doi.org/10.1016/j.inffus.2017.02.004
Mouret, J.B., Tonelli, P.: Stud. Comput. Intell. 557, 251 (2015). https://doi.org/10.1007/978-3-642-55337-0_9
Gonçalves, P.M., De Carvalho Santos, S.G.T., Barros, R.S.M., Vieira, D.C.L.: A comparative study on concept drift detectors (2014). https://doi.org/10.1016/j.eswa.2014.07.019
Sobolewski, P., Woźniak, M.: Adv. Intell. Syst. Comput. 226, 329 (2013). https://doi.org/10.1007/978-3-319-00969-8_32
Sebastião, R., Gama, J.: 14th Portuguese Conference on Artificial Intelligence, pp. 353–364 (2009). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.233.1180
Santos, S., Barros, R., Gonçalves, P.: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, vol. 2016, pp. 1077–1084, January 2016. https://doi.org/10.1109/ICTAI.2015.153
Pears, R., Sakthithasan, S., Koh, Y.S.: Mach. Learn. 97(3), 259 (2014). https://doi.org/10.1007/s10994-013-5433-9
Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Pattern Recogn. Lett. 33(2), 191 (2012). https://doi.org/10.1016/j.patrec.2011.08.019
Bangalore, P., Patriksson, M.: Renew. Energy 115, 521 (2018). https://doi.org/10.1016/j.renene.2017.08.073
Huang, G.B., et al.: Neurocomputing 70(1–3), 489 (2006). https://doi.org/10.1016/j.neucom.2005.12.126
Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine (2009). https://doi.org/10.1016/j.neucom.2009.02.013
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: J. Mach. Learn. Res. 11, 1601 (2010). http://portal.acm.org/citation.cfm?id=1859903
Maciel, B.I.F., Santos, S.G.T.C., Barros, R.S.M.: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, vol. 2016, pp. 1061–1068, January 2016. https://doi.org/10.1109/ICTAI.2015.151
Sobolewski, P., Woźniak, M.: J. Univ. Comput. Sci. 19(4), 462 (2013)
Woźniak, M., Ksieniewicz, P., Kasprzak, A., Puchała, K., Ryba, P.: Advances in Intelligent Systems and Computing, vol. 525, pp. 27–34 (2017). https://doi.org/10.1007/978-3-319-47274-4_3
Du, L., Song, Q., Zhu, L., Zhu, X.: Comput. J. 58(3), 457 (2015). https://doi.org/10.1093/comjnl/bxu050
Acknowledgements
This research has been supported by NEM Solutions, a technology-based company focused that provides intelligent maintenance of complex systems to O&M businesses.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Martinez, I., Viles, E., Cabrejas, I. (2018). Labelling Drifts in a Fault Detection System for Wind Turbine Maintenance. In: Del Ser, J., Osaba, E., Bilbao, M., Sanchez-Medina, J., Vecchio, M., Yang, XS. (eds) Intelligent Distributed Computing XII. IDC 2018. Studies in Computational Intelligence, vol 798. Springer, Cham. https://doi.org/10.1007/978-3-319-99626-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-99626-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99625-7
Online ISBN: 978-3-319-99626-4
eBook Packages: EngineeringEngineering (R0)